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Mathematics, to the radio engineer, is merely a tool to be used in his design work.
.For this reason it is often-used in a slovenly manner or with insufficient precision or
understanding.

There are normally three stages in the solution of a problem—

1. Transferring the mechanical or electrical conditions into a mathematical form.
2. Solving the mathematics.
3. Interpreting and applying the mathematical solution.

The first stage is dealt with in Chapter 4 ; the second stage is the subject of this
chapter, while the third stage requires careful consideration of all the relevant con-
ditions. A solution only applies under the conditions assumed in stage one, which
may involve some approximations and limits. In all cases the solution should be
checked either experimentally or theoretically to prove that it is a true solution.

This chapter is not a textbook on mathematics, although it is in such an easy form
that anyone with the minimum of mathematical knowledge should be able to follow it.
It has been written primarily for those who require assistance in “‘ brushing up ”
their knowledge, and for the clarification of points which may be imperfectly under-
stood. Itis ‘ basic ” rather than elementary in its introduction, and could therefore
be read with advantage by all.

Sufficient ground is covered for all normal usage in radio receiver design, except
for that required by specialists in network and filter design.

Reference data have been included for use by all grades
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6.1 (i) FIGURES 255

SECTION 1 : ARITHMETIC AND THE SLIDE RULE

(3) Figures (i) Powers and roots (#i) Logarithms (iv) The slide rule (v) Short
cuts tn arithmetic

(@) Figures

A figure (e.g. 5) indicates a certain number of a particular object—e.g. five resistors,
or five radio receivers ; or else five units of a particular scale—e.g. five inches, five
microfarads or five ohms. No matter what we may do with adding, subtracting,
multiplying or dividing, if we begin with ohms we must finish with ohms, and so on
with any other unit. We cannot add together dissimilar objects without identifying
each type, and similarly with any other mathematical process.

(ii) Powers and roots
As figures are often too large, or too small, to be shown completely in the ordinary
form, there is a Scientific Notation commonly used—

Numbers above unity Numbers below unity
10! = 10 10=t = 0.1
10t = 100 1072 = 0.01
10® = 1 000 10-3 = 0.001
10¢ = 10 000 107¢ = 0.000 1
10° = 100 000 105 = 0.000 01
10°% = 1 000 000 10-¢ = 0.000 001
and so on
100 =1

Note that 102 means 10 x 10 = 100 ; 10> means 10 x 10 x 10 = 1000 and so on,
The ““2” and the *“ 3 > are called exponents, or indices (plural of index).
10% is called ‘10 squared
10? is called * 10 cubed ”
10* is called ““ 10 to the fourth” etc.
10~ is called ¢“ 10 to the minus 1 etc.
Examples : 2 750 000 is written 2.75 x 108
0.000 025 is written 2.5 x 1075,
Multiplying is carried out as in the examples :
(15 x 10% x (4 x 1073 =6 x 10°
(4.5 x 10%) x (2 x 109) =9 x 10°
Reference should be made to the table of multiples and sub-multiples in Chapter 38
Sect. 17, Table 59.
The same procedure may be applied, not only to 10, but to any figure, e.g. 3
30 =1

3 =
3 =3x3=9 3 = 1/3% = 1/9
3* =3 x 3 x3=27 373 = 1/3% = 1/27

Roots : The expression 9% may be written \@: where the sign 4/ :is called the
square root. Similarly 27!/ may be written /27 where the sign v/ is called the
cube root. ‘ .

The whole question is dealt with more fully, and more generally under ** Algebra
in Sect. 2.

(iil) Logarithms

We may write 100 = 102
or we may express this in different language as

2 = logy, 100

which is spoken of as * log 100 to the base 10.” Here 2 is the logarithm of 100 to
the base 10.

Tables of logarithms to the base 10 are given in Chapter 38 Sect. 20, Table 71.
They are useful in multiplying and dividing numbers which are too large to handle
conveniently by the ordinary procedure.
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A typical logarithm is 2.4785. Here the figure 2 to the left of the decimal point
is called the index, and the figures 4785 to the right of the decimal point are called
the mantissa.

(1) The index of the logarithm of a number greater than unity is the number which
is less by one than the number of digits (figures) in the integral* part of the given
number ; for example the index of the logarithm of

57 640 is 4

5764 is 3

576.4 is 2

5764 is 1

5764 is 0
If the number is less than unity, the index is negative, and is a higher number by
one than the number of zeros that follow the decimal point of the given number ; for

example the index of the logarithm of °

5764 is —1
, .005 764 is —3.
To denote that the index only is negative, the minus sign is usually written above it ;

e.g. 1, 3.

(2) The mantissa of the logarithm is found from the tables. Proceed to find the
first two figures in the left hand column of the table, then pass along the horizontal
line to the vertical column headed by the third figure. To this number add the
number in the difference column under the fourth figure of the given number. The
mantissa is the result obtained by this process with a decimal point before it.

For example, to find log,, 5764.

The index is 3

The mantissa is (7604 + 0003 = .7607

Therefore log,, 5764 = 3.7607.

Similarly, log,, 0.5764 = 1,7607 (note that the index is negative, but the mantissa
positive).

To find the number whose logarithm is given, it is possible to use either
antilog. tables (if these are available) or to use the log. tables in the reverse manner.
In either case, only the mantissa (to the right of the decimal point) should be applied
to the tables,

The procedure with log. tables is firstly to find the logarithm, on the principal
part of the table, which is next lower than the given logarithm, then to calculate the
difference, then to refer to the difference columns to find the number—exactly the
reverse of the previous procedure,

For example, to find the number whose logarithm is 2.5712. The mantissa is
.5712 and the nearest lower logarithm on the tables is 5705, the difference being 7
(in the fourth figure). The number whose log = 5705 is 3720, and to this must be
added the figure 6 which corresponds to the difference of 7 in the fourth column ;
the number is therefore 3720 4 6 = 3726. The decimal point must be placed so
as to give 2 + 1 = 3 digits to the left of the point, i.e. 372.6.

The application of logarithms
If two numbers are to be multiplied together, the answer may be found by adding
their logarithms, and then finding the number whose logarithm is equal to their sum
For example, suppose that it is desired to multiply 371.6 x 58.24,
log 371.6 = 2.5701
log 58.24 = 1.7652

sum = 4.3353
The number whose log = .3353 is 2164.
The decimal poiat should be placed so as to give 4 + 1 = 5 digits to the left of
the point ; i.e, 21 640.

*To the left of the decimal point.
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Therefore 371.6 x 58.24 = 21 640.

It should be remembered that the last figure of four figure logs. is correct to the
nearest unit, and that slight errors creep into the calculations through additions and
other manipulations. The first three digits of the answer will be exact, and the fourth
only approximate.

If one number is to be divided by a second number, the answer may be found by
subtracting the logarithm of the second from the logarithm of the first, then finding
the number whose logatithm is equal to their difference.

Logarithms may also be used to find the powers of numbers For example,
to find the value of (3.762)% : :

log (3.762)® = 3 log 3.762 = 3 x .5754
= 1.7262
Therefore (3.762)2 — antilog 1.7262 = 53.23.
For other applications of logarithms see Sect. 2(xvii)

(iv) The Slide Rule

The Slide Rule is a mechanical device to permit the addition and subtraction of
logarithn_ s so as to effect multiplication and division of the numbers. The small
size of the normal slide rule does not give as high a degree of accuracy as four figure
log. tables, but is sufficiently accurate for many calculations,

The usual 10 inch slide rule has four scales A, B, C, D of which B and C are on the
slide. The scales C and D (the lower pair) are normally used for multiplication and
division, and each covers from 1 to 10. The upper scales A and B cover from 1 to 100,
The square of any number from 1 to 10 is found by adjusting the line on the cursor
(runner) to fall on the number on the D scale, and reading the answer where the line
cuts the A scale. The cube of a number from 1 to 10 may be found by squaring, and
then multiplying the result by the original number on the B scale, reading off the
answer on the A scale. If the number is not between 1 and 10, firstly break it-up
into factors, one of which should be a multiple of 10, and the other a number between
1 and 10, then proceed as before. For example

300% = (3 x 100)* = (3)* X (100)? = 32 x 104,
The value of 32 is found in the normal way to be 9 ; this is then multiplied by 104 to
give the answer 9 X 104 = 90 000.

Square roots may be found by the reverse procedure. Firstly reduce the number
to factors, one of which should be a multiple of 100 and the other between 1 and 100,
then apply the cursor to the number on the A scale and read the answer on the D scale
to be multiplied by the square root of the 100 factor. For example, to find the square

root of 1600: | /7e56 - 4/T6 % 100 = /16 x V/100 = 4/T6 x 10.
The value of 4 on the D scale is then multiplied by 10 to give the answer 40.

Cube roots of numbers between 1 and 100 may be determined by setting the
cursor to the number on the A scale, then moving the slide until the B scale cursor
reading is the same as the D scale reading below 1 on the C scale.

Slide rules which have log/log scales may be used to determine any power of
a number 1.1 or greater (up to a maximum value of 100 000}, Set the cursor to the
number on the upper log/log scale, then set 1 on the C scale to the same cursor line.
Move the cursor to the required power on the C scale and read the answer on the
log/log scale. If the number is too high to be on the upper log/log scale, carry out
the same procedure on the lower log/log scale. If the number is found on the upper
scale, but the answer is beyond the limits of this scale, set the mark* (e.g. W) on the
slide immediately below the number on the upper scale, and read the answer on the
lower scale, immediately below the power on the C scale.

If several figures are to be multiplied and divided, carry out multiplication and
division alternately, e.g. 75 % 23 X 5

41 x 59 x 36
should be handled as 75 = 41 X 23 + 59 x 5 = 36.

*\With slide rules having no special mark, use 10 on the C scale as the *“ mark.”
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In a complicated calculation, especially with very large and very small numbers,
it is highly desirable to arrange the numerator and denominator in powers of 10.
For example

75000 x 0.0036 x 5900 7.5 X 10¢* X 36 x 1073 X 59 x 10°

160 000 x 0.0000017 16 x 105 x 1.7 x 10~°
75x36><59><105

1.6 x 1.7

The slide rule does not indicate the position of the decimal point, and it is necessary
to determine the latter by some method such as inspection ; this is much easier when the
individual numbers are all between 1 and 10 as in the example above. Itis also possible
to keep track of the decimal point by noting how often the manipulation passes from
end to end of the rule.

To find the logarithm of a given number, move the 1 on C scale to the number on
the D scale, then turn the rule over and read the logarithm on the L scale against
the mark (this will be a number between 0 and 1).

To find the decibels corresponding to a ratio, proceed as for the logarithm, but
multiply by 10 for a power ratio or 20 for a voltage ratio.

To find the sine or tangent of an angle, first set the angle on the S or T scale to the
mark, then read the value on the B scale, below 1 on the A scale, and divide by 100.

There are countless special types of slide rules, and in all such cases the detailed
instructions provided by the manufacturers should be studied.

Hints on special calculations on the slide rule

(1) Z = VR + X* = RV1 + (X*/R?)

Procedure : For example if X = 3 and R = 2 set cursor to 3 on D scale, move
slide to give 2 on C scale. The value of (X/R)? is given by the value on A scale op-
posite 1 on B scale—in this case 2.25. Move the slide up to 3.25 (= 2.25 + 1) and
then move the cursor to 2 on C scale, reading 3.61 on D scale as the answer.

(2) If a large number of figures is to be divided by one figure, divide unity or 10
(D scale) by the divisor (C scale) and then, with fixed slide, move the cursor to each
dividend in turn on the C scale, reading the answer on the D scale.

(v) Short cuts in arithmetic

(a) Approximations involving =

7%  may be taken as 10 with an error less than 1.49,
may be taken as 25/8 with an error less than 0.69,

1/7 may be taken as 8/25 with an error less than 0.69,

27 may be taken as 25/4 with an error less than 0.69%,

1/27 may be taken as 4/25 with an error less than 0.69,

(2m)* == 39.5 with an error less than 0.06%,

(b) Approximations with powers and roots
General relation: (x + 8"~ x" 4+ nx™ 1§
where § is small compared with x. Examples are given below.
Squares (n = 2)
10.1° = (10 + 0.1’ &2 10% + 2 x 10 x 0.1 &¢ 102 (error = 0.019,)
10.2* =(10 4+ 0.2’ /¢ 10* + 2 x 10 x 0.2 &~ 104 (error = 0.049,)
992 = (10 — 0.1)2 & 10® — 2 > 10 % 0.1 &~ 98 (error = 0.01%)

Square roots [#n = 05; (# — 1) = —0.5]
058
Vxd saVix+ T Ve
—— 05 %1
V101 = /100 1 ~ 1/100 + VTl 10.05 (error = 0.0019%)
A
Ty 0
VII0 = /100 4 10 &~ /100 + % 5{657 10.5 (error = 0.129%)
vV
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V50=+449 11 ~ 49 + o‘i/x_l A~ 7.0714 (error = 0.004%)
19

Cubes (n = 3)
(10.2)* = (10 + 0.2)* & 10% + 3 x 102 X 0.2 a2 1060 (error = 0.19%,)
Cube roots [n# = 0.333; (n — 1) = ~0.667]

V% 8%\3/;— 8—“
* 3‘:3(\3/%)2

66 = V6t T 2a V6 + 2~ 8082
3 x 4%
For more accurate approximations see Sect. 2 eqns. (82) and (83).

(¢) Approximations in multiplication
a X ba }(a + b)* where a and b are close together
e.g. 49 X 51 A~y (49 + 51)* &~ 1(100)® & 2500 (error 0.04%,).
This may be put into the alternative form :
a X b~ (arithmetical mean between a and b)?
e.g. 68 x 72 ax (70)* av 4900 (error 0.08%).

(d) Exact multiplication
a X b = }(a + b)* — (a — b)*} (no error)

= (arithmetical mean between a and b)? — } (a — b)%
When (¢ — b) = 1, the second term in this expression becomes } and we have the
exact application :

3% X 43 = 16 — } = 15% (exact).
Another application is illustrated by the example
98 x 102 = 100%* — }(4)? = 10000 — 4 = 9996.

(e¢) To multiply by 11

To multiply a number by 11, write down the last figure, add the last and last but
one and write down the result, carrying over any tens to the next operation, add the
last but one and the last but two and so on, finishing by writing down the first

e.g. 11 x 42736 = 470096 (no error)
(f) For approximations based on the Binomial Theorem see Sect. 2{(xviii).
(g) For general approximations see Sect. 2(xx).

SECTION 2: ALGEBRA

() Addition (i5) Subtraction (i) Multiplicarion (iv) Division (v) Powers
(vi) Roots (vit) Brackets and simple manipulations (viit) Factoring (ix) Proportion
(x) Variation (xi) Inequalities (xii) Functions (xiti) Equations (xiv) Formulae
or laws (xv) Continuity and limits (xvi) Progressions, sequences and series (xvii)
Logarithmic and exponential functions (xviti) Infinite series (xix) Hyperbolic
Sfuncrions (xx) General approximations.

See Section 6 for Complex Algebra.

Algebra is really only arithmetic, except that we use alphabetical symbols to stand
for figures. It is frequently more convenient to put an expression into an algebraic
form for general use,and then to apply it to a particular case by writing figures in place
of the letters. All algebraic expressions are capable of being converted into arith-
metical ones, and the fundamental tnathematical processes of algebra may be used
in arithmetic.
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(i) Addition
If a, b, and ¢ are all values of the one unit (e.g. all resistances in chms) we can add
them together to find the sum d, where d will also be in the same unit,
d=a+b+c
= 15 ohms,

For example, if a = 5,b = 10, ¢
=5 -+ 10 4 15 = 30 ohms.

then

(it) Subtraction .

Subtraction is the opposite of addition, or negative addition, and can only be applied
when the quantity to be subtracted is in the same unit as the quantity from which it
is to be taken. For example let

a=b—c¢
where a, b and ¢ are all voltages.

If b = 6 volts and ¢ = 2 volts, then

a =6 — 2 = 4 volts.

'As another example, let a, b and ¢ be readings of a thermometer in degrees—say
b = 10°C and ¢ = 20°C, then g = 10°— 20°= — 10°C. This is commonly de-
scribed as ‘ 10 degrees below zero ** or ** a temperature of minus 10 degrees.” Thus
a negative temperature has a definite value and is readily understood. Its magnitude
is given by the figure, while its direction above or below zero is given by the positive
or negative sign.

Similarly a negative current is one with a magnitude as indicated by the figure but
with a direction opposite to that of a positive current. In most cases the direction
of a'positive current is arbitrarily fixed, and if the answer comes out negative it merely
indicates the actual direction of current flow is the opposite of the direction assumed.
The same principle holds in all cases.

(iii) Multiplication
Muitiplication is continued addition—
4Xa=a+tatata
and is commonly written as 4a. In the general sense we can write ba where b is any
number ; this has the same value as ab,
ie.ab = baorab = b.a.
It should be noted that
4 X (—a) = — 4a
and (— 1) X (— 1) = 4+ 1.
(iv) Division
Division is the breaking up of a number of things into a given number of groups, e.g.
6a - 3 = (2a + 2a + 2a) + 3 = 2a.
We may write this in the alternative forms
6a
3= 2a, or 6a/3 = 2a.
(v) Powers
Powers are continued multiplication,
e eg.a® =aag=a xXaxa

a™ =g X a X a X a...(mfactors)
a® =a X a X a X a...(nfactors) :
Therefore a™ X an = gim +» €))

We can write, as a convenience,
1
.— in the form g "
2 :
where the —=# is not a true index (or exponential) but merely a way of writing 1/a",

am
Therefore = am x g% = gqm—n )

which indicates that the —» can be treated as though it were a true index.
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The following can also be derived :

am
=T =a
am
but ;; =1
Therefore o =1
(am)n = gMm X —= gmn
(ab)" = am™b"

G =6 -+
(—a)* = (=" X a"

+a™if nis even
or = —a"if nis odd

|1

These identities hold even when m and » are negative or fractions.

(vi) Roots
\/a X a=aor\/a2 = g

Vaia Ve
a X a < a=ador a” = a
We may adopt as a convenience the form

’\/a == a’:
Vo = atrs
"Va = q'"

This may be extended to include
"\/21—7;1 — (am)lln = gmi"
so that a™" is the nth root of a™.

Note that 1/\3/;=\3/I/—a,' 1/”\/52 ”\/17;

(vii) Brackets and simple manipulations
ala+b) =axa+axb=a+ ab
x(a+b—c¢)=xa+ xb— xc

—x (a + b) —xa — xb
—x(a — b) —xa + xb = x (b — a)
—la—8) —(c+ d)] ~(a—0b) +(+ a

—a+b+c+d

b+c+d —a

ax +bx (a+bx a+b x a+b

ex +dx  (c +d)x-7+‘?ixjc=}+d
(@ + )% = (a + b)a + b) = ala + b) + bla + b)

By 0w

=a 4 2ab + b
(@ — b)® = (a — bYa — b) = ala — b) — bla — b)
=at —2ab + b

(a + b)a — b) = ala — b) + bla — b) = a* — b*
(@ + b)x + ) = ax + ay + bx + by
(@4 b4 )2 =a®+ b+ ¢+ 2ab 4 2bc + 2ca

a a —12ac a® s
T aa T e
ll_—a ~am "4(1‘
tET T T T T e
ax0=0; 3 = infinity* = o

(note that it is not possible to divide by 0 in aigebraic computations).
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3

(4)
(5)
)
(8
9)
(9a)
(9b)

(10)
an

(12)
13),
14)

(15)

(16)

an
(18)
a9
(20
(2D
(21a)
(21b)

(22)

(23)
(23a)
(24)
(24a)
(25
(26)
(27

(28)
(29

(30)

*Infinity may be described as a quantity large without limit.
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c—d cd ° ¢

ii:—b ad + bc a b a+tb a a ald+o
[

= c c d- cd @D

o

The sign 4 means either plus or minus. When + and/or ¥ signs are used on
both sides of an equation, the upper signs in both cases are to be taken in conjunction
as one case, while the lower signs are to be taken as the other case.

@, e @ a_a 3
5 dT8 § Tk 32
a. c_a d_ad ‘ 23
FTdTE X T e (33)
x a+b b x(c + d) _y/a + b
A 34
y ¢ +d y(c +d (34)
x4+ d) —y(a+b)
N ye + d) (34b)
(viii) Factoring—Exzamples -
6ab + 3ac = 3a(2b + ¢) (35)
P — Txy + 129" = (x — 4y)(x — 3y) (36)
2x* + Tx + 6 = (2x + 3)(x -+ 2) 37
X%y — 4y = y(x* —~ 4y%) = y(x + 2y)(x ~ 2y) (38)
(ix) Proportion
a c a b
1) If b_ = ?1* then E‘ = —“i (39)
a c ad — bc
also Pl i 0 therefore 5d =0 (40)
from which ad — bc = 0 and thus ad = bc (41)
a_¢ .8
@ 1t b*dandalsof—h’
ae cg
th —
e o ~ dh (42)
(x) Variation
Ify = kx, then y o x
i.e. v is directly proportional to x.
Iify :—J-C’thenyoC?
i.e. y is inversely proportional to x.
If y = kxz, then y varies jointly as x and z.
Ify = kg, then y varies directly as x and inversely as z
(xi) Inequalities

The letter symbols below are positive and finite.

If @ > b then a+c¢c>b -+ b <a (43a)
a—c¢c>b—-¢cc—a<<c—5b (43b)
ac > b, be << ac (43¢)
a_t, e < (43d)
¢ c a b



6.2 (xi) INEQUALITIES 263

Ifa—c>bthena> b +¢ (44)
If a > band c>d
thena 4 ¢> b + d, and ac > bd (45)

(xii) Functions
We may describe 3x + 4 as “ a function of x *° because its value depends upon the
value of x. This is usually written as
F(x) = 3x + 4.
Other typical functions of x are
2x2 + 3x + 5; x(x? + 3x);
cos x; log x; 1/x.
In such functions, x is called the ‘ independent variable.,” It is usual to write
F(a) as meaning * F(x) where x = a.”
(xiii) Equations
An equation is a statement of conditional equality between two expressions con-
taining one or more symbols representing unknown quantities. The process of
determining values of the unknowns which will satisfy the equation is called solving
the equation,
An Identical Equation is one which holds for all values of its letter symbols.

A Linear Equation is one in which, after getting rid of fractions, the independent
variable only occurs in the first degree (e.g. x).

Example: y = 5x + 3.

A Quadratic Equation is one in which, after getting rid of fractions, the inde-
pendent variable occurs in the second degree (e.g. x*) but not in higher degree.

Example : y = 4x% + 5x + 3.

A quadratic equation in one unknown has two roots, although both may be complex
(i.e. with an imaginary term),

A Cubic Equation is one in which, after getting rid of fractions, the independent
variable occurs in the third degree (e.g. x*) but not in higher degree.

Example : y = 3x% + 4x% 4+ 2x + 5.

Note : x and y are usually taken as unknowns ; a, b, ¢ and d as known constants.

Rules for solution of equations

1. The same quantity may be added to (or subtracted from) both sides.
Example: If x + 3 =2; then x +5=4 and x +1 =0,

2. A term can be moved from one side to the other provided that its sign is changed.
Example: If a=0b; thena — &6 =0,

3. All signs in the equation may be changed together.
Example: If x —a=3y —b; thena —x =b — 3.
This is equivalent to multiplication throughout by — 1.

4. Both sides can be multiplied (or divided) by the same quantity.
Example: If x + 2 = 5; then 2x + 4 = 10.

5. The reciprocal of one side is equal to the reciprocal of the other.
Example : If x = a; then i = :7 .

6. Terms can be replaced by terms that are equal in value.

7. Both sides can be raised to the same power.
Example : If x = g ; then x* = %

8. Both sides can be replaced by the same root of the original.
Example : If x = a; then \3/; = \3/Zand

in general, "\/; = m/qif nis odd, bucif n is even we must write

Wr—xVa
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which means that _ _ _ .

either "Vx = *Vq or "Vx = —"V/a.
In such cases two roots are obtained, and both should be tested in the original equa-
tion.

Warning
If both sides of an equation are squared, or if both sides are multiplied by a term
containing the unknown, a new root may be introduced.

Solution of equations
(1) Linear equations with one unknown
Example: ax + b = 0.
Solution : ¥ = — b/a. (46)
(2) Linear equations with two unknowns
Any linear relation between two variables, x and y, can be written in the general form

ax +by +c=0 (47)
or (provided that b is not zero) in the alternative form
y=mx+n (48a)

This type of equation is not limited to one or two solutions, but has a corresponding
value of y for every possible value of x. Itis very helpful to plot the value of y against
the value of x on squared paper—see Sect. 5(i). With any equation of this type, the
graph will be a straight line, and it is only necessary to determine

(1) one point on the line
(2) the slope of the line at any point.
The most convenient point is usually x = 0, and in eqn. (48a)
this will give y=n
or in eqn. (47) this will give y = —c¢/b

The slope of the line is given by the difference of the y values of two points, divided

by the difference of their x values.

In eqn. (47) the slope is — a/b
while in eqn. (48a) the slope is m.
A particular -form of egn. (47) is
x )y
— =1 (48b)

and in this case the line cuts the x axis at ¥ = g and cuts the y axisaty = b, The
slope is equal to — b/a.
An equation of the form
a b
o +y =¢ (49)
may be solved by regarding 1/x and 1/y as the unknowns, then following a similar
procedure as for an equation in x and y, and solving for 1/x and 1/y.

(3) Simultaneous linear equations (two unknowns)

ayx + by =¢; — c1by — b,y
} * ayby — azb, (50a)
X + by = ¢ A1y — axly

¥y = (50b)

aby — azb,
provided that (a;b, — a;b;) is not zero.

Alternatively the solution may be derived by determining x in terms of y from the
first equation, and then substituting in the second.

Checking solutions :

After any solution has been found, particularly with more than one solution, it is
highly desirable to check these in the original equation.

(4) Three simultaneous equations (three unknowns)

Given [ax + by +cz 4+ d = 0.

ayx + by + ¢z 4+ d, =

0
@yx + by + €27 4+ dy =0
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Then

% = d(byey, — bycy) + di(bey —~ bec) + dolbic — bcy)
a(bic; — byey) + a (b — bey) + aslbcy — byo)

g d(aycy — agcy) + di{@xc — acy) + dylac, — a0) 1)
a(bycy ~ bocy) + ay(boc — bey) + anbe, — bye)

2 = d(a,bl —_ albz) + dl(abz - agb) + dg(alb it abl)
a(bicy ~— byey) + aylbye — beg) + aglbc; — bic)

It will be noticed that the three denominators are identical.

(5) Quadratic equations

(x —a)f(x +b)=0; x =aorx = —b (52)
— z
axt L bxte —0; x— —DEVE —da 53

2a
Note that in eqn. (53)
when b% = 4ac, the two roots are equal
when b% — 4ac is positive, the two roots are real.
when 4% — 4ac is negative, the roots are imaginary.

(6) Quadratic equations with two variables

Example: y = ax® + bx + c.

This type of equation is not limited to one or two solutions, but has a corresponding
value of y for every possible value of x. It is helpful to plot part of the curve on
squared paper——see Sect. 5(i). The curve may cut the x axis at two points, or it may
touch at one point, or it may not touch it at all. Lety = €, then

axt +bx +c=0
and the points at which the curve cuts the x axis will be
— b Vb — dac
yo— o =NV T
2a

If b% > dac, the curve will cut at two points.

If b2 = 4ac, the curve will touch at one point,

If b? < 4ac, the curve will not cut the x axis.

(54)

(xiv) Formulae or laws
A formula is a law, or rule, generally in connection with some scientific relation-
ship, expressed as an equation by means of letter symbols (variables) and constants.
For example, Ohm’s Law states that E == RI where each of the letter symbols
has a precise meaning. If we know any two of the variables, we can determine the

third,

E E
R = 7 and I = "R‘
Another example is
1
Xe = 3.7C

which gives X for any desired values of f and C. Note that 27 is a constant.
All formulae or laws may be rearranged in accordance with the rules for the solution
of equations, so as to give the value of any variable in terms of the others.

(xv) Continuity and limits

Some functions are ¢ continuous,” that is to say they are smooth and unbroken
when plotted as curves. Other functions are said to be *‘ discontinuous ” if at some
value of x the value of y is indeterminate or infinite, or there is a sharp angle in the
plotted value of ¥ = F(x). Examples of points of discontinuity are :

(1) y = 1/x is discontinuous at x = 0.

(2) ¥ = 101/® — 1 js discontinuous at x = 1.

Even when a function is discontinuous at one or more points, it may be described
as continuous within certain limits.
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It frequently happens that a function approaches very closely to a limiting value,
although it never quite reaches it for any finite values of the independent variable.
For example, the voltage gain of a resistance coupled amplifier is given by

A= pR, /R, +71,)
and it is required to find the limiting value of 4 when R, is made very great.
The formula may be put in the form

A=p

1
Ty (55)
1+ R,
and as R, is made very much greater than r,, the value of /R ; becomes very small
although it never actually reaches zero. We may express this in the form
Le ’_’L) =0 33
Ry~>» \R;
which may be stated ¢ the limit of (r,/R ), as R approaches infinity, is zero.” The
limiting value of A, as R, approaches infinity, is therefore
Lt 4 = p (57)
R, o0
(xvi) Progressions, sequences and series
A Sequence is a succession of terms so related that each may be derived from one or
more of the preceding terms in accordance with some fixed law.
A Series is the sum of terms of a sequence.
Arithmetical Progression is a sequence, each term of which (except the first) is
derived from the preceding term by the addition of a constant number.
General form: a, (a + d), (a + 2d), (a + 3d)

Example : 2, 5, 8, 11, etc.

(herea = 2 and d = 3).
Thenth term = a + (n — 1)d (58)
The sum of n terms is S = §n[2¢ + (n — 1)d] (59)

When three numbers are in Arithmetical Progression, the middle number is called
the ¢ arithmetical mean.” The arithmetical mean between a and b is §(a -+ b).

Geometrical Progression is a sequence, each term of which (except the first) is
derived from the preceding term by multiplying it by a constant ratio (r).

General form: a, ar, ar? ar®,
Examples : 3, 6, 12, 24, r =2)
4 =2+l r=-1
With the general form above,
the snth term = gqrn— 1! (60)
and the sum of the first » terms is
rr — 1
s —o(F21 61)

When three numbers are in Geometrical Progression, the middle number is called
the Geometrical Mean. The Geometrical Mean of two numbers g and & is +/ab.
If the ratio r is less than unity, the terms become progressively smaller, and the
sum of a very large number of terms approaches
a
S =
> L —T
Harmonic Progression : The terms a, b, ¢, etc. form a harmonic sequence if their
reciprocals

(62)

i 1 1
2 ’ 2 ’ p s etc.
form an arithmetical sequence.
Example : 1, 4, 1/3, 4, 1/5 is a Harmonic Progression
because 1, 2, 3 , 4, 5 is an Arithmetical Progression
2ab

The Harmonic Mean between g and b is ——-
a+b
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Note that the Arithmetical Mean between two numbers is greater than the Geo-
metrical Mean, which in turn is greater than the Harmonic Mean.

With any form of progression or sequence, we are often concerned with the sum of
a number of terms of which the general term is given. It is possible to write this
sum in a shortened form, for example

=n
1+243+44+...+k+...+0= Sk
k=1
where the Greek letter capital sigma is used to indicate the sum of a number of terms ;
k is merely the general term ; and the values of k are to be taken from £ = 1 (beneath
sigma) to k& = n (written above sigma).

(xvii) Logarithmic and exponential functions
If a* =N
then x is the logarithm to the base a of the number N. This may be put in the form
x = log, N
where the base ¢ may be any positive nuxiber except 1 or 0.
The two principal systems of logarithms are
(1) The Naperian (or natural) system, using the base ¢ = 2.718 28 . . . (pre-
ferably written with the Greek €), and
(2) The Briggs (or common) systém, using the base 10.
Only one set of tables is required, for it is possible to convert a logarithm to one
base (b) into a logarithm to any other base (a) :
log, y = log, ¥ X log, b
If it is required to find thelogarithm to the base ¢, given the logarithm to the base 10,

log,y = log,oy x loge 10 (63a)
= logisy x 2.3026 (63b)
log,oy = log .y x 0.4343 (63c)

Some properties of ¢
The value of € is given by the right hand side of eqn. (86).
Values shown below in brackets are to four decimal places.
€ = 2.71828 (= 2.7183)
1/e€ = 0.367879 (= 0.3679)
log; € — 0.43429 (= 0.4343)
log . 10 = 2.30259 (= 2.3026)
log, 10 = 1/log,q €
logse €" = n X 0.43420 (= n x 0.4343)

Some manipulations with logarithmic functions

log a/b = loga — log b (64)
logl/a = —loga (65)
logy® = n X logy (66)
logy™ = —logy (67)
log y™'* = (m/n) X logy (68)
log vy = log y'* = (1/2) log y (69)
log Vy = log y¥? = (1/3) log » 70)

To find the cube root of 125—

V125 = (125)12

Therefore log (125)1'3 = (1/3) log 125 = (1/3) (2.0969) = 0.699.
Then antilog 0.699 = 5.00 (from tables).

log Vy* = flog y (71)

log abc = log a -+ logd + log ¢ (72)

log (ab/cd) = loga + logb — log ¢ — log d (73)

v lundey @ Dy -y abms - Ao wedambedadalar cavgivosiuis 7

2ab
The Harmonic Mean between g and b is 5—:——-
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log Vat — b = 3logla+ b + tlog(a —b) an
Logarithmic Functions are closely related to Exponential Functions, and any
equation in one form may be put into the other form, If the curves are plotted, the
two will be the same.
Example : Exponential form y
Logarithmic form x
Numerical example :
Ifr=10and x =3
Then y = 103 = 1000.
This may be handled by the logarithmic form of the equation,
x = log, y = log,, 1000 =3 as before.

r T
log. ¥

o

Logarithmic decrement : If the equation is of the form
y = ae7b
where (~ b) is negative, the value of y decreases as x is increased, and (—~ b) is called
the Logarithmic Decrement.

(xviii) Infinite series

It was noted, when dealing with Geometrical Progression, that it is possible to take
the limit of the sum of a very large number of terms, as the number approaches in-
finity, provided that the terms become progressively smaller by a constant ratio.
Such a series is called ¢ convergent >’ and is defined as having a finite limit to the sum
to infinity., Infinite series which do not comply with this definition may be * diver-
gent ” (these are not considered any further) or else they may be “ oscillating.”

(a) Binomial series :

1 + mx +
The nth term is

mim — 1) mlm — 1)(m ~ 2)
12~ 123

x® 4 etc. (78)

_m(m—l)(m—Z)...(m——n—{—Z)x

— -1
@ 123...n = D " (79
The denominator is usually written in the form
(n—1)!

which is called * factorial (n — 1).”

This Binomial Series is convergent, provided that x is numerically less than 1.

(b) Binomial theorem :
Case 1:

(b 0ym = 1k 4 2D mOm = Dm — 2)x°

21! 31
mm — 1) ... (m —n+ x"—1
+ n =1 (80)

which holds for all values of x if m is a positive integer, and for all values of m provided
that x is numerically less than 1.
The Binomial Theorem is useful in certain approximate calculations, If x is small
compared with 1, and s is reasonably small;
a+ xom 1 + mx
a1 —xm 1 — mx
I+ "~ 1 — mx (81)
(1 —xy* 1+ mx J
To a closer approximation (taking three terms),
A+ 2™ ~ 1+ mx + 3 mim — 1) x2
A - ~ 1 —mx + 4mim — 1) x2 (82)
A+ 0"~ 1 —mx + $mm + 1) x2 )
A —=xr"=~1+ mx + % m(im + 1) x
Numerical example : To find the cube root of 220.

2
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3/ 4 1,3 1\1/3
220 = (216 + &® = ( _) - ( i
4 (216 + 4) {2161+216} 6(1 +

Applying the approximation from the Binomial Theorem,
A+ "~ 1+ mx

to the evaluation of the quantity above, we may make x = 1/54 and m = 1/3, from
which

(142) ~1 45 g1+ g 1006

+54_~ +3 54~ +1?2~l.0 17

Therefore /220 ~ 6 x 1.006 17 ~ 6.037.
Case 2:

We can also expand (a + x)™, which is convergent when x is numerically less than
a:

(a4 )™ =am™ -+ ma™'x + ’Z’Eﬁz.—_;_}_) amx® 4 _m_(ﬂ%%%) a™ %3 .. (83)
Approximation :
1 1
a+1=(a+1)‘lm;<l—;)whena>1 84

(c) Exponential series
From the Binomial Theorem, putting x = 1/n and m = nx, we may derive

l)ﬂz xZ x3 x4 xn—-l

(1-1—; —1+x+2—!+§+a+...+(‘n—:‘—]ﬁ 4+ ... (85)

When x = 1 this becomes

(l—{—})"—l 1 »1—+~1—— i-{- S 86
" M + +2! 3!+4! "'+(n—1)' + ... (86)

The right hand side of this equation is the value €, which is equal to 2.71828 (to five
places of decimals). Taking the xth power of each side of this equation,

1\
(1+;) =<

1 ne
Therefore € = (1 -+ ;l)
2 4 xn—l

X
+—4—|+.+(—n‘—~—15"+ [¢:Xp)

. x x3
and € =1+x+ 7+
which is called the Exponential Series.
(d) Logarithmic series

The logarithmic series is the expansion of log (1 + x) in ascending powers of x :

xt x% xt N

loge(l+x)=x——2—+§~—a—+... (88;
which is convergent if x is numerically less than 1.

(e) Trigonometrical series
% x* X

sinx=x—~'3—!+—5—!~§~!+... (89)
x2  xt x*
cosx=l—ﬁ+z—!~a+... (99)

x3 2x5 177 62x"
mnx=x+3 +715 * 315 T 3%3s + . Ux < 7/2) (o1)

For derivation of eqns. (89) and (90) see Sect. 6, eqns. (17) and (18).

(xix) Hyperbolic functions
These are combinations of the sum and difference of two exponential functions.

- is called the hyperbolic sine of x, designated by sinh x

€* 4+ €

z
2 is called the hyperbolic cosine of x, designated by cosh x,
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Z" _T_ j—;x is called the hyperbolic tangent of x, designated by tanh x
and similarly with the inverses
cosech x = 1/sinh x
sech x = 1/cosh x
coth x =1 /tanh x
Note ¢ =1 + + T + -l- + LRy 2.718 28 (92)
The following may be derxved.
cosh?x — sinh?x = 1 (93)
sech’x + tanh?x = 1 (94)
coth’x — cosech®x = 1 (95)
sinh (— x) = — sinh x; cosh (— x) = cosh x; tanh (— x) = — tanh x (96)
inh tanh x -
sinn X = —————moo—— 24
V1 = tanhix 4/coshzx — 1 97
1
cosh x = —=—====—- sinh?
Vi tenmiy = Vsinhix + 1 (98)
sinh %
tanh x cosh - \/1 — sechix (99)
sinh x + sinh y = 2 sinh —iz— osh ~?—9—' (100)
sinh x — sinh ¥y = 2 sinh »~-;—J—} cosh JF—EZ (101)
cosh x 4- cosh y = 2 coshaiglf cosh x ; 4 (102)
cosh x — cosh ¥ = 2 siph ity sinh _7,_2_‘_;}’ (103)
sinh (x £+ ¥)
tanh x 4 tanh y = cosh x cosh y (104)
(sinh x + cosh x)* == cosh nx 4 sinh nx (105)
sinh™x = log ¢ (x + \/& 1) = cosh™14/x? + 1 (106)
cosh™x = log (x + /2 1) =sinh V% — 1 (107)
tanh™'x = 4 Iogsl tx (108)
cosh1 ) T (109)
= ——m=—=—:. = si e
\/1 — x? V1 — x*
g3ty gtz )
sinh (x &+ y) = — = sinh x cosh ¥ 4 cosh x sinh y (110a)
€rkv + etz
cosh (x £+ y) = B —— = cosh x cosh y + sinh x sinh y (110b)
€tV — ¢t ¥  qanh x + tanh y
tanh (¥ £ ) = €t v + ¢ ¢£% "1 { tanh x tanh y 1D
. . 2 tanh x
sinh 2x = 2 sinh x cosh x = 1~ tanh? » (112)
1 + tanh? x
— 2 inh2y — A
cosh 2x cosh? x + sinh?x I~ tanb? x (113)
2 tanh x
tanh 2x = 17 tanhir (114)
cosh x + sinh x = ¢~ (11%a)
cosh x — sinh x = e # (115b)

3

. x x5
anhx=x+3*!+;5*!+w. (115¢)
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x2 x4 xG
coshx=l+§T+j4-!+a+... (115d)

(these are convergent for all real values of x).
Also in complex form (see Section 6)

sinh jx = j sin x ; coshjx = cos x; tanhjx = j tan x (116)
sinjx = jsinh x; cosjx = cosh x (117)
sinh (x £ jy) = sinh x cos ¥ & j cosh x sin v (118)

Note that x and v in sin x, cos x, tan x etc. in egns. 116 to 119 must be expressed
in radians.

cosh (x £ jy) = cosh x cos y 4 j sinh x sin y (119)

. X —_—

sinh (E) _ N/coshzx 1 . cosh (g) _ \/cosh x2+ 1 (120)
x cosh x — 1 sinh x

tanh (5) = sinh x ~ cosh x + 1 (121

(xx) General approximations
Let 3 be an extremely small quantity and x be a quantity very large compared with

8, then
! 1+ 8 ! 1 -3 (122
T—s ~1+ 17~ - )
1+ 8,
1+52N1+51—51 (123)
- )" Ay 8
a % » lT+n }where n may be integral, (124)
o . : 1
DL 1F nd fractional or negative (125)
V1 +da 1 + 38 V1I-—38a1— 35 (126)
1 1
ey 1 — 33 ———— a1 + 45 127
VI+ 8 i VI8
a1+ 3~1+28 (1 —8)P~1-—28 (128)
(x + )"~ x™ + nx— 18 (129)
Eqn. (129) is used in Sect. 1(v)b for approximations with powers and roots.
Vax + )y x + 38 Valx — A x — 38 (130)
O+ 8)1 £33 14 8y & 8 (131)
(1 + 801 + 3)(1 + 8)As 1 4 8y + 3y + 34 (132)
where 3,, §, and 8 are all extremely small quantities.
eS~1+ 8 €d~ 138 (133)
€/R¢ ~ 1 + t/RC. € !/RC » 1 — t/RC (134)
Eqn. (134) has an error less than 0.6% when /RC does not exceed 0.1,
8 8\?
loge(x & B)mvloge x £ ~ — é(;) (135)
loge (1 + 8) Ay 5 — 38 (136)
sinh § & 8 cosh d ~ 1 tanh d &¢ § (137
sinh18 & & tanh—15 &~ & (138)

sinh (x + 8) & sinh x + 8 cosh x ; sinh (x — 8) & sinh x — o cosh x (139)

cosh (x + &) & cosh x + & sinh x ; cosh (x — 3) & cosh x — 3 sinh x (140)

tanh (x 4+ 8) &~ tanh x + 8§ sech? x ; tanh (x — 3) &~ tanh x — 3 sech? x (141)
When L is a large quantity

sinh L &~ }el cosh L ~ el tanh L &~ 1 (142)

Trigonometrical relationships

When 8 is an extremely small quantity, so that an angle of 8 radians is a very small
angle, and x is an angle very large compared with 3,
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sin & 3 cos S~ 1 tan & &~ & (143)

sin™ 18 Ay & cos™ 1dRs 4m(dK — 1) + 8 tan~ 8 s 8 (144)
where K is any integer. See Sect. 3(iii) for inverse functions.

sin (x 4+ 8) &2 sin x + & cos x sin (x — 8) As sin x — & cos x (145)

cos (x + 8) =~ cos x — 3sin » cos (¥ — 3) Av cos ¥ + Ssin x (146)

tan (x + &) A tan x + 38/cos? x tan (x — 8) A2 tan x — §/cos? x (147)

SECTION 3 : GEOMETRY AND TRIGONOMETRY

(@) Plane figures (it) Surfaces and volumes of solids (i1i) Trigonometrical relation-
ships.

(i) Plane figures
Angles .
Two angles are complementary when their sunt is equal to a right angle (90°).
Two angles are supplementary when their sum is equal to two right angles (180°),
The three angles of a triangle are together equal to two right angles (180°)
27 radians = 360°
» radians = 180°
1 radian Ay 57.29578°
1° &~ 0.0174533 radian.

When an angle is measured in radians, and incorporates the sign =, it is usual to
omit the word ““ radians ** as being understood—e.g. 7, 2.

Right Angle Triangles (Fig. 6.1)

Sine :* : = sin 4 a=csin A4 )
Tangent : §=:an/1 a=btan 4 )
Cosine : g = cos A4 b =ccos A 3)
Cosecant : :—; = cosec 4 = 1/sin A4 (4
Secant ¢ g =sec A = 1/cos A4 [6))
Cotangent : g =cot A = 1/tan 4 (6)

¢ is called the hypotenuse.

FIG. 6.1

@ + b = N
a =+ blc —b) = Vme 8
a =csinA_='btanA (O]
b =\/(c+a)(c——a)=\/nc - 10
b =ccos A =acot A= a/tan A an
¢c =Va+b=m+n , (12)
¢ =acosecd = afsin A4 =bsec A = b/cos A (13)
Area =}ab=3%a’cot 4 = } b2tan 4 - (14)
= }ctsin2A = tbcsin A = } acsin B (15)

Tbe perpendicylar (p) to the hypotenuse is the mean proportional (or mean geo~
metrical progression) between the segments of the hypotenuse,

*See Sect. 3(iii) for rrigonomerrical relationships.
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m r .
7'=;t’ P =\ mn (16)
m a = b
1 e e
also — = == - an
Any triangle inscribed in a semicircle, with the diameter forming one side, is a right

angle triangle.,
Equilateral Triangle (Fig. 6.2a)

Each side = q
Each angle = 60°
m = % a
B =3 m=(V3/2)a~ 0.866a (18)
*IC.62A area = } ah = (V/3/4)a® ~ 0.433q* 19)
Any triangle (Fig. 6.2b)
Area = } bh = Vs(s — a)(s — b)(s — ©) (20)
where b = base, % = height, s = 4 (@ + b + ¢).
a & _c 21
sinA sinB sinC @
a® = b? 4 ¢ — 2bccos 4 22)
b2 = ¢? 4 q? — 2cacos B
¢* = a* + b* — 2abcos C (23)
a="bcos C+ ccos B (24)
b=ccos A -+ acos C
FiG.6.28 ¢ =acos B + b cos 4. (25)
Rectangle (Fig. 6.3)
Area = ab o (26)
d = diagonal = V/a* + B 7)
Parallelogram (Fig. 6.4)
Area = bh = absin C; a =c; b = d. (28)
Angle A = angle C; angle B = angle D. (29)
Trapezoid (Fig. 6.5).
Side d is parallel to side b.
Area = ¥b + d)h. : 30)
d &
° ‘l A o f &
1 ¥
d o € ", / ¢ :{ a
i i
1 1
! |
k : 8 3 ¥ 8
[ & &
FIC.6 Fi6.64 FIG.6:9
Polygons and Quadrilaterals
To find area, divide into triangles, calculate the area of each, and add.
Circle
Circumference = = X diameter &~ 3.1416 X diameter @3n
= 27 X radius Az 6.2832 X radius 32)
Area = = X (radius)? = } (circumference X radius) (33)
= (n/4) X (diameter)® ~ 0.7854 (diameter)? (34)
Sector (Fig. 6.6)
A = angle subtended at centre = s/r radians (35)
¢ =2Vr' — a® = 2rsin (A/2) = 2a tan (4/2) = 2V 2kr — B® (36)

4= 3o — & =3/ d — & = rcos (A4/2) = } ¢ cot (4/2) 37
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///’—5\ T - T
Vs ~
N <
b d [
FiG. 6-6 FIG 6-7
s = length of arc = rA4 (A4 in radians) (38)
= 7rA/180 (A4 in degrees) (39)
h=r —a=r(l — cos A/2) (40)
Area of sector = §rs = } 24 (4 in radians) (41)
= = r? A/360 (A in degrees) (42)
Area of segment (bounded by chord ¢, curve s)
= 4 r2.(A — sin A) (A in radians) (43)
= 4r(s — rsins/r) (s/r in radians) (44)
= % [r (s — ¢) + ch] for segments less than half a circle. (45)

Ellipse (Fig. 6.7)
The ellipse has two foci, F and F’, and for any point P on the perimeter,

FP + PF’ is constant = FB 4+ BF’ = FA 4 AF’ (46)
Major axis = AB = 2a; minor axis = CD = 2b C1)
Area of ellipse = mab ~ 0.7854 major axis X minor axis (48)
Perimeter =¥ a (4 + 1.1m + 1.2m?), where m = b/a (49)

An ellipse may be drawn by putting a pin into the paper at each focus (F, F"), tying
the ends of a short length of cotton thread around the pins leaving a slack portion in*
the middle, and running a pencil point around in the loop of the thread.

To find the foci, draw an arc with centre at C and radius g to intersect the X axis
(AB) at F and F.

Parabola (Fig. 6.8)
The parabola has a focus (F) and a directrix (MN) and for any point P on the para-

bola,
FP = PM where PM is the perpendicular to the directrix (50)
Area of segment cut off by chord PP’ = (2/3) ch. 51
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Hyperbola (Fig. 6.9)

The hyperbola has two foci (F, F’) and two asymptotes, and for any point P on
either curve,

FP — FP = constant : (52)

General rules for areas

Areas bounded by straight sides may be calculated by dividing the area into tri-
angles, caiculating the area of each and adding.

Areas bounded by irregular curves may be divided into parallel strips and the area
calculated by one of the following approximations :
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Trapezoid rule

#

Area = d(3y, + Vo F Fa A+ o + Yao1 + 3V0) (53)
where d = width of each strip
and ¥,, ¥, ¥a. ...y, are measured lengths of each of the equidistant parallel chords.

Note that the first (y,) and the last (y,) do not cut the area, and may be zero if the
surface is sharply curved.

Simpson’s Rule

d
Area — 3 (v +4ys + 2y + 4y, + 25 ... 4+ 290s + 4Y0y + V) 54

where # must be odd
d = width of each strip
and ¥;...Yy, are measured lengths of equidistant parallel chords.

(ii) Surfaces and volumes of solids
Cube (length of side = a)

Volume = a° (55)
Surface area = 6a® N (56)
Length of diagonal = a\/3 (57)

Rectangular prism
(length = I, breadth = b, height = &)

Volume = lbh (58)
Surface area =42(lb j—_it bh) (59)
Diagonal = /8% + [Z + A® (60)

Cylinder, solid right circular
(length /, radius r)

Volume = =% & 0.7854 4% (61)
Area of curved portion = 27 ¢l = = d! (62)
Arca of each end = = #? (63)
Total surface area = 2n v (I + 1) (64)

Hollow cylinder, right circular
(length /, outer radius R, inside radius r)

Volume = = [ (R? — r?) (65)
Any pyramid or cone

Volume = 1/3 (area of base x distance from vertex to plane of base) (66)
Sphere

Volume == gw r® = 7 d*/6 &~ 4.1888 r® &z 0.5236 d4° (67)

Surface area = 4n r® = 7 d* (€8)

(iii) Trigonometrical relationships

We have already introduced the sine, cosine and tangent of an angle, and their
inverses, under the subject Angles (Fig. 6.1). The following table may readily be
derived with the assistance of Fig. 6.10 :

Angle Sine Cosine Tangent
0 0 1 0
30° 1/2 V372 1/V3
4;° 1/V2 1/V2 1
60° V372 1/2 23
90° 1 0 oo *

*Approaches infinity as angle approaches 90°.

The values for any angle between 0° and 90° may be found from Table 72, Trigo-
nometrical Relationships, in Chapter 38 Sect. 21, or from any book of Mathematical
Tables.



276 (ii)) TRIGONOMETRICAL RELATIONSHIPS 6.3

Angles of any magnitude

If the line OX (Fig. 6.11) revolves about O to a new position OP, the amount of
rotation is the angle XOP between its original position OX and its new position OP.
Such a counter-clockwise rotation is called positive, while the opposite direction of
rotation is called negative.

& g
¢ N
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\
; 1

A

66\

%

! 1 ! r(x)
FIG. 610 G. 614

Examples of angles in all four sectors are shown in Fig. 6.12. It will be seen that,
for any angle A, the position of OP is the same for a movement of angle A in a positive
direction, or for a negative movement of (360° — A4); for example,

+ 330° = — (360° — 330°) = — 30°
In the case of angles greater than 360° we are generally only concerned with the final
position of OP, so that for these cases we may subtract 360°, or any multiple of 360°,
from the angle so as to give a value less than 360°. For example 390° = 360° + 30°;
800° = 720° 4 80°; 1125° = 1080° + 45°.

In trigonometry it is also necessary
to define the polarity of the three
sides of the triangles from which
we derive the sine, cosine and
tangent. The hypotenuse (OPy)
is always positive (see Fig. 6.13).
The base (OX,) is positive when X g
is to the right hand side of O, and %)
negative when X is to the left of O ¥
(e.g. OX,). The perpendicular is fies:2
positive when P is above X (e.g. P, X,) and negative when P is below X (e.g. = P,).

ist Quadrant : All sides positive (OX,P,).
Sine, cosine, tangent all positive.
2nd Quadrant : OX, negative, other sides positive.
Sine = X,P,/OP, which is positive.
Cosine = 0X,/0OP, which is negative.
Tangent = X,P,/0OX, which is negative.
3rd Quadrant : OX,, X,P; negative ; OP; positive.
Sine = X,P,/0OP, which is negative.
Cosine = OX,/OP, which is negative.
Tangent = X,P;/0X, which is positive.
4th Quadrant : OX,, OP, positive, X,P, negative.
Sine = X ,P,/OP, which is negative.
Cosine = OX,/OP, which is positive,
Tangent = X,P,/OX, which is negative.

A convenient method for determining graphically the value of the sine, cosine and
tangent of an angle is shown in Fig. 6.14, where the circle is drawn with radius 1
(to any convenient scale, say 1 inch). To the same scale, PX gives the value of the
sine, OX the cosine and AT the tangent.

“ Inverse ”’ functions

If sin 6 = n, we may describe @ as the angle whose sine is n. This is convention-

ally written in the form

o .
e FIG.613

8 =sin"!n,
where the ““ sin™ ! is to be regarded purely as an abbreviation for * the angle whose
sine is.”



The same system is used with all trigo-

nometrical functions—cos™— %, tan~ %, RAD) w

cosec™ 1, sec— 1, cot— L
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1
A

These are occasionally written as arc sin,
arc cos, arc tan, etc.

FIC. 614

i
Y

R COSINE
fa

FIiG. 615
Summary of trigonometrical relationships
1. cosec A = 1/sin A = cot A/cos A (69)
sec A = 1/cos A = tan A/sin A (70)
cot A = 1/tan A = cos A/sin A 71
2. tan A == (sin A)/(cos A) = sin A sec 4 (72)
3.sin A = cos (90° -~ A) = sin (180° — A) (73)
cos A = sin (90° — A) = — cos (180° — A) (74)
tan A = cot (90° — A) = ~— tan (180° — A) (75)
cosec 4 = sec (90° — A) = cosec (180° — A) (76)
sec A = cosec (90° — A) = — sec (180° — A) (W)
cot A = tan (90° — A) = — cot (180° — A) (78)
4. sin? A +cos? A =1;se*4 —tan* A4 = 1 (79)
(Note : sin? A4 is the square of sin A)
sin A =+ V1 —cos* 4 = + tan 4 = 4+ ! . (80)
V1 + tan* 4 V1 4+ cotz 4
cos A = + \/l_.—‘s*invfx?i_ = + { - = 4 cot 4 — (81)
V1 + tan® 4 \/1+cot2A
the choice of signs being determined by the quadrant.
5.sec? A =1/cos? A =1 + tan* 4 (82)
cosec? A = 1/sin?* 4 =1+ cot? 4 (83)
6. sin (A 4 B) =sin Acos B + cos A sin B (84)
cos (A + B) = cos Acos B — sin Asin B (85)
tan A + tan B
tan (4 + B) = 1 -tandAtan B (86)
7.sin (A — B) = sin Acos B — cos Asin B (87)
cos (A — B) = cos Acos B + sin Asin B (88)
4B tan A — an B (89)
tan (4 — B) = 1 + tan 4 tan B
8. Negative angles (Fig. 6.15)
sin (— A4) = XP;/OP; = — (XP,/OP,) = — sin A4 (90)
cos (— 4) = OX/0OP, = OX/OP,; = cos 4 91
tan (— A) = XP,/0X = — (XP,/OX) = — tan 4 (92)
cosec (— A) = OP,/XP, = — (OP,/XP,) = — cosec 4 (93)
sec (— A) = OP,/O0X = OP,/OX = sec 4 (94)
cot (— A) = OX/XP, = — (OX/XP,) = — cot 4 (95)
in24 = 2sindcos d = 0 (96)
9.s8in24 = 2sindcos 4 = 1 T tant A4
cos 24 =cos? A —sin? 4 =1 —2sin? 4 =2cos*4 — 1 97)
2tan A cot2 4 — 1
w24 =7 gpig U2 = o o8

10. sin 34 = +V3(A —cos &) = £ 3V1 +sind — 4V1 —sind ) (99
cospd = VI tcos A) = + (31 +sin 4 + $V1 —sind ) (100)

_l—cosAf sinAf;
mnid = T T i Y s 4

(101)
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11. sin 34 =3sin 4 — 4sin® 4 3tan 4 — tan® A
cos 34 = 4cos®4 — 3 cos 4 tat 34 = 1 —3wntAd (102)
12, sin* A = #1 — cos 24) (103)
cos* A = ¥(1 + cos 24) (104)
13. sin®* A = }(3sin 4 — sin 34) (105)
cos® A = }cos 34 4+ 3 cos A) (106)
14. Approximations for small angles :
where A is measured in radians
sin A &~ A — (4%)/6 error for 30° is 0.069, (107)
cos A~ 1 — (A42)/2 error for 30° is 0.35% (108)
tan A~ A + (A4%)/3 error for 30° is 1.03% (109)
and for very .small angles sin 4 ~ A4 (110)
cos A ~ 1 (111
tan A &~ A. (112)
See also Sect. 2(xx).
eid__ —id
15. sin 4 = B TR [Sect. 6, egn. (19)] (113)
GjA+] 4
cos A = 2 [Sect. 6, eqn. (20)] (114)
16. versine A'=1 — cos A = 2sin? (4/2) (115)

SECTION 4 : PERIODIC PHENOMENA

The rotation of a wheel and a train of waves are two examples of periodic phenomena,
that is to say the same action takes place repeatedly, each of such phenomena being
called a “ cycle.”” The number of cycles which occur in 1 second is called the fre-
quency, and is expressed in one of the forms

cycles per second c/s
kilocycles per second Ke/s
megacycles per second Mc/s,

If we take a point (P in Fig. 6.16) which is rotating with uniform angular velocity*
about the point O, we can plot the height PX against the angle of rotation (§). When
P is at A (which we may regard as the zero poing, since here 8 = 0), PX = O, and
we mark point B. When P is at angle 0, the perpendicular PX gives point C, and
CK = PX. When ¢ = 90°, P will be at the top of the circle, giving D on the curve.
When 8 = 180°, P will be at the extreme left hand side of the circle, and the hejght
above OA will be zero, thus giving point E.  When ¢ = 270°, P will be at the bottom
of the circle, giving point F on the curve. Lastly, P will return to point A (the zero
point) and the height will be zero, point G, If the process is continued, the curve
(GH etc.) will repeat the shape of the first cycle (BD etc.) and so on indefinitely.
Thus BCDEFG :epresents one cycle.

FIG. 6.16 | eyete The length PX = r sin 6, so that its

o " projected height CK is proportional to

I the sine of §. The curve is therefore

A o N E called a *“ sine curve ” or * sine wave.”
X BIK] M G A cosine curve has exactly the same

! . shape, except that it begins at D (since

Angle O 5 90" 180° 270° 360° 450° cos 0° = 1) and the cycle ends at H.

The motion of the point X, as it oscillates about O between the extremes A and A’
is called Simple Harmonic Motion.

Angular velocity (usually represented by the small Greek letter omega— w) is the
number of radians per second through which the point P travels. In each revolution

*i.e, uniform rate of rotation.
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(360°) it will pass through 2= radians, and if it makes f revolutions per second, then
the angular velocity will be
w = 2nf radians per second
where f = frequency in cycles per second.
In most mathematical work it is more convenient to write w than to write 2xf.

SECTION 5 : GRAPHICAL REPRESENTATION AND j
NOTATION

(@) Graphs (i) Finding the equation to a curve (iti) Three variables (iv) Vectors
and j notation.

(i) Graphs
Graphs are a convenient representation of the relationships between functions.
For example, Ohm’s Law
E = RI
may be represented by a graph (Fig. 6.17) in which 7 is plotted horizontally (on the
X axis) and E vertically (on the Y axis) for a constant value of R.

Any point P on the plotted “ curve ” has its position fixed by coordinates. The
horizontal, or x—coordinate (OQ) is called the abscissa, while the vertical, or
y—coordinate (QP) is called the ordinate. The position of the point is written as
a, b, thus indicating that x = aand y = b, where ¢ = OQ and b = QP.

Any function of the form

y =mx + n (m and n being constants)

is a linear equatijon, since the plotted curve is a straight line. It only passes through
the origin (O) if n = 0

In the general case, the SECOND ¥ FIRST
axes extend in both direc- v QUADRANT QUADRANT
tions about the origin (Fig.
6.18) forming four quad-
rants and allowing for neg-
ative values of both x and y.
These are known as ‘ Car-
tesian Coordinates.”

When the two variable
quantities in an equation °
can be separated into %7
““ cause ”’ and *‘ effect,’” the ‘‘ cause ”’ (known as the independent variable) is plotted
horizontally on the x axis, and the ““ effect ’ (known as the dependent variable) vertic-
ally on the y axis. In other cases the choice of axes is optional.

Any convenient scales may be used, and the x and y scales may differ.
The procedure to be adopted to plot a typical equation
y=2x* 4+ 4x — 5 )
is as follows. Select suitable values of x (which will be regarded as the independent
variable) and calculate the value of y for each :

+X

V)
— 4

| oroimate
&

3

ABSCIS: THIRD FOURTH
= A T QUADRANT -3 QUADRANT

FG. 618

x =3 y=18+12 -5 = 425
x =2 y= 8+ 8—-5=+411
x =1 yv= 24+ 4—-5=+4 1
x=0 y= 0+ 0—-5=— 5
x = —1 y=2— 4 —~-5= -7
x = —2 y= 8- 8~-5=— 5
x=—3 y=18 —12 —~5 = 1
Then plot these points, as in Fig. 6.19A and draw a smooth curve through them.
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The tangent at any point (e.g. P in Fig. 6.19A) is a straight line which is drawn so
as to touch the curve at the point. The slope of the tangent, which is the same as
that of the curve at the point, is defined as the tangent of the angle ¢ which it makes
with the X axis. Between points B and C on the curve, 8 is positive, therefore tan 8
is positive and the slope is called positive. Between points B and A4 the angle 0 is
negative, and the slope negative. At point B, # = 0 and the slope is zero. It is
important to remember that the curve normally extends in both directions indefinitely
unless it has limits, or turns back on itself. It is therefore advisable, when plotting
an unknown function, to take very large positive and negative values of x and cal-
culate the corresponding values of y, even though the points cannot be plotted on
the graph paper. This will indicate the general trend of the curve beyond the limits
of the graph paper.

Y

425 C

120

[
0
5
L — Fau¥
-2 -1 ‘:/ +1 *7 +3 +x
5

A
- N e
-3
8
4 -0
FIG. 6. 19A -
The equations of some common curves are :
Straight line through origin N = mx I
Straight line not through origin =mx + n @
Circle with centre at origin =7 — x? ‘ 3
Circle with centre at (%, k) (x— B2+ (y— k)2 =12 @)
General equation of circle x4yt dxtevt+f=0 (B
. ¥yt
Ellipse AT s 1 (6)
2 2
Hyperbola 3—;‘2 J—;;: 1 @y
Parabola (origin at vertex) y? = 2px 8
Focus is at x=p/2,y =0 @

Areas and average heights

The average height of a curve (i.e. the average length of the brdinates) may be de-
termined by dividing the area beneath the curve into strips of equal width, and then
using either the Trapezoid Rule or Simpson’s Rule {see Sect. 3 eqn. (54)] to deter-
mine the area, and dividing the area by the length (abscissa).

Logarithmic paper :

Logarithmic ruled paper is frequently used in the plotting of curves, particularly
when the x or y coordinates cover a range of 100 : 1 or more. - Single cycle* paper
accommodates a range of 10 : 1, and may be drawn by hand, using the whole of the
C scale, or half the B scale on a slide rule. Two “ cycle ” log paper accommodates
a range of 100 : 1, and may be drawn with the whole B scale on a slide rule. Each

*Strictly this should be called single decade.
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of the ““ cycles ” has the same linear length. Additional “ cycles ”’ may be added as
desired (for examples see a.v.c. characteristics in Chapter 27).

5.6.198
Y FIG.6.19

Occasionally it is desirable to use log.
log. ruled paper ; this is ruled logarithmic-
ally on both X and Y axes. - An important

> feature of this form of representation is
2\ that a curve of the type
y = ax"
is shown as a straight line with a slope of n
where the slope is measured as the number
of “cycles” on the Y axis per “cycle ”
on the X axis (see Fig. 6.19B).

I.',

. In plotting readings (say for a valve I,
[e— 1 Cycle —=1.  F. characteristic) which are likely to follow
. x- 4 power law, it is often helpful to use log.

i ° ! log. paper. A straight line indicates a
true power law, and its slope gives the value of the exponential—usually not an integer.
A slightly curving line indicates a close approach to a power law, and a tangent or
chord may be drawn to give the slope at a point or the average over a region.

(i) Finding the equation to a curve
A method which may be used to find the equation to a curve is given by K. R. Sturley
in his book “ Radio Receiver Design—Part 1 (Chapman and Hall, London, 1943)

pages 419-421. 40
FIG. 6.20
(iii) Three variables s
The plate current of a triode is given 30
approximately by :
I, = K(uE. + Ey*/2 *
In one typical case K = 10 x 10~* mhos zolb
(the perveance) )
and p = 20. 15
Here there are three variables, E ., E, aqd 0
I,. We can select a suitable value of E,
calculate the curve, and then repeat the s
process for other values of E,. Here E, is
called the parameter. Ny o) R -
If E, = 250 volts, the plate current in milliamperes will be

I, = 1072 (20 x E, + 250)*/? mA

If Ec = 0; Ib 10— (0 + 250)3/2 = 102 (250)8[2 39 mA
= — 4,1, = 1072 (— 80 + 250)%2 = 1072 (170)*/* v 22 mA
E.= — 8,I,=10"%(— 160 + 250)%/2 = 1072 (90)*/* &~ 8.5 mA
E, = — 12, I, = 1072 (— 240 + 250)*/2 = 107% (10)*/2 &~ 0.3 mA

These points have been plotted in Fig. 6.20, and a curve has been drawn through
them marked E, = 250 V.

Similarly, for E, = 150V,

IfE,= 0,1, =10"2(0 + 150)%/2 = 1072 (150)*/* &~ 18 mA

E,= — 2,1, = 1072 (— 40 -+ 150)*/2 = 1072 (110)*/2 &~ 11.5 mA
E.,= — 4,1, = 1072 (— 80 + 150)%/2 = 1072 (70)*/* &~ 5.8 mA
Ec= — 6, I, = 1072 (— 120 + 150)*/2 = 1072 (30)*/2 &~ 1.6 mA

Cut off occurs at E, = — (150/20) = — 7.5 volts.
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These points have been plotted and a smooth curve drawn through them. Similar
curves could be drawn for any other plate voltage, thus forming a ¢ family ** of curves.
This is actually a three-dimensional graphical. diagram reduced to a form suitable
for a flat surface.

(iv) Vectors and j notation

Any physical quantity which possesses both magnitude and direction is called a
vector, - Vectors may be represented on paper by means of straight lines with arrow-
heads. The length of the line indicates (to some arbitrary scale) the magnitude of
the quantity, and the direction of the line and arrow-head indicates the direction in
which the vector is operating. The position of the line on the pape: is of no con-
sequence.

Addition of vectors
Vectors may be added by drawing them in tandem, and taking the resultant from the
A 8 beginning of the first one to the end of the
last one. Fig. 6.21A shows two vectors,
a and b, which are added together to give
the resultant ¢. Exactly the same result
is obtained by placing a and b together, as
in Fig. 6.21B, completing the parallelo-
gram, and taking c as the diagonal. Vec-

FIG.6.21

a ° tors are generally printed in bold face type,
to distinguish them from scalar values,
which have no direction, although they

FiG. 6.22 1 have magnitude and sign (i.e. positive or
negative).

Vector negative sign

A vector (— a) has the same magnitude
as a vector (a) but its direction is reversed.
Subtraction of vectors

The vector to be subtracted is reversed in
direction, and then the vectors are added.

In Fig. 6.22, to find a — b, the direction of b is reversed to give (— b) and then a
and (— b) are added to give the resultant (a — b).
Multiplication of a vector by a number (7)
The resultant vector has the same direction, but its length is increased » times
eg. a X n = na

I
i FIG.6.23
|
i
]
e Ha a

l-(——-bCo:e——>{ o e

The scalar product of two vectors
The scalar product of two vectors (a 'and b in Fig. 6.23) is ab cos 6, where 8 is
the angle between them. This may be written
a.b = abcos 8
where a . b indicates the multiplication of two vectors. From Fig. 6.23 it will be

seen that the scalar product is the product of the magnitude of one vector and the
“ projection >’ of the other on it.

(o]
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Components of a vector

Any vector can be resolved into two component vectors in any two desired directions.
For example, in Fig. 6.21 the vector ¢ can be resolved into the component vectors
aand b. If the component vectors are at right angles 1o one another they are called
rectangular components ; in such a case they are usually taken horizontally (aiong
the X axis) and vertically (along the Y axis). The vector OA in Fig. 6.24 can be
resolved into two rectangular components OB and OC where

|OB| = |OA| cos 8, |OC| = |OA] sin 6,

Polar coordinates

An alternative form of defining a vector OP is

oP =r /9

where r is the magnitude of OP, and / ¢ indicates that there is an angle § between it
and OX (Fig. 6.25).

A graphical device has been described* for the con-
version from complex to polar forms.

N

. . FIG. 6.2%
Rotating vectors** (j notation)

If a vector X (OA in Fig. 6.26) is rotated 90° in a
positive direction to a position OB, the new vector is \
called X, and j is described as an ‘ operator ” !
which rotates a vector by 90° without changing '|
its magnitude. !

If the vector jX (OB in Fig. 6.26) is operated upon }
by j, it will be rotated 90° to the position OC, ]
where it is called 72X, the ;2 indicating that it has .
been rotated 2 X 90° = 180° from its original position OA.

b

If the vector j?X (OC in Fig, 6.26) is operated upon by j, it will be rotated 90° to the
position OD, where it is called j°X, the ;* indicating that it has been rotated 3 < 90°
= 270° from its original position OA.

If the vector 72X (OD in Fig. 6.26) is operated upon by j, it will be rotated 90° to
the position OA where it would be called j4X, the j* indicating that it has been rotated
4 x 90° = 360° from its original position OA.

There is an important deduction which is immediately obvious. j? indicates a

B reversal of direction which is the same as
4 a change of sign. The operator j? is
therefore equivalent to multiplication
FIG 6.26 by — 1.
i% If the operator j# is applied twice in succes-
sion, the result should be equivalent to multi-
plication by — 1 twice in succession, i.e.
€ < . X (— 1) x (— 1) = + 1. This is so, because
e © A the operator j* brings the vector back to its
original direction.
Since the operator j? is equivalent to multi-

P plication by — 1, we may deduce thatthe
operator j is equivalent to multiplication by
Y \/ "1, even though this in itself does not
> mean anything.
Operator Equivalent to multiplication by
j V-1
7 -1
7 /=1
Jt +1
—f —+4/ =1 (same as operator ;%)

*Snowdon, C. *‘A vector calculating device,” Electronic Eng. 17.199 (Sept. ‘1‘943) 146.
**Also called *“ radius vectors.” In pure mathematics 17’ is used in place of **J.
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Operator Equivalent to. multiplication by
1 —_— o
- —/—1 (same as operator — j)
J
1 1 ) — .
e 4/ — 1 (same as operator j)
—J J

See Chapter 4 Sects. 4(v), 5(v) and 6 for the application of the ] notation to a.c.
circuits.

The direction of any vector can be defined in terms of the j notation. In Fig. 6.25,
OX represents the axis of reference, OP the vector, and 6 the angle of rotation of OP
from OX. The perpendicular PA may be drawn from P to OX and then, by the
simple theory of vectors, OP is the sum of the vectors OA and AP. Usingj notation,
we may say that

OP =a +jb
which means that the vector OP is the vector sum of a and b, where « is in the direction
of the reference axis OX and b is rotated 90° from OX. In other words, ais the
component of OP in the direction OX, and b is the component of OP in the direction
OY. The values of a and b are given by
a = OP cos 8, b = OP sin 6,
where 6 = tan— 1! b/a.

This is sometimes called the Argand Diagram.

In electrical a.c. circuit theory (Chapter 4) it is well known that the current through
an inductance lags behind the applied voltage, while the current through a capacitance
leads the voltage. This is most clearly shown by rotating vectors. It should be borne
in mind that all the vectors are rotating at the same angular velocity—one revolution
per cycle of the applied voltage—and that the pictorial representation is for any one
instant. Fig. 6.27 shows the vector diagram for peak a.c. current (I) flowing through
a resistance (R) and an inductance (L) in series. The current vector (E) may be placed
in any convenient direction—say horizontally (Fig. 6.27) ; a solid arrow head is used
to distinguish it from voltage vectors. The peak voltage drop (RI) in the resistance
must be “in phase ” with the cutrent, and is so shown. The scale to which the
voltage vectors are drawn has no connection with the scale to which the current (I)
is drawn—in fact we are here only concerned with the direction of I. The peak
voltage drop across L is wLI = XX, and this vector is drawn verrically so as to lead
the current I by 90°. ‘The total peak voltage drop (E) is found by ‘ completing the
parallelogram of vectors > as previously. It will be seen that I lags behind E by the
angle 6. '

FIG.6.27 \ ‘ C FIG. 6.28 \

A similar procedure applies with a capacitance instead of an inductance (Fig. 6.28)
except that the capacmve reactance is X, instead of X L and the vector of peak voltage
drop across C (X I) is drawn vertically downwards, since it must be oppos1te to XL
The current (I) here leads the voltage (E) by the angle 6.
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SECTION 6: COMPLEX ALGEBRA AND DE MOIVRE’S
THEOREM

(#) Complex algebra with rectangular coordinates (it) Complex algebra with polar
coordinates (i) De Moivre’s Theorem.

(i) Complex algebra with rectangular coordinates
Complex algebra should preferably be called °* the algebra of complex quantities,”
and it is really quite simple to understand for anyone who has even a limited know-

ledge of mathematics. P

It was explained in Section FIG. 6.29
5 that the letter j* in front of
a vector indicated that it had
been rotated 90° from the jx

FI1G,6.30

3
reference, or positive X, axis !
(Fig. 6.29). We can make
use of this procedure to in-
dicate the magnitude and A

o 3 o 4

direction of any vector, In
Fig. 6.30 the vector OP, with magnitude 5, has been resolved into the rectangular
components—
OA = 4 in the + X direction
and AP = 3 in the /X direction (90° to X).
The X axis is taken horizontally through O, and is sometimes called the * real >’ axis,
while the X direction is called * imaginary.” It is therefore possible to describe
OP in both magnitude and direction by the expression
4 4 j3.
Its magnitude is the vector sum of 4 and 3, which is VA £33 =14/25 =5, Its
direction is given by the angle 8 from the X axis, where cos § = 4/5.
Any other vector, such as a in Fig. 6.31, can similarly be resolved into its com-
ponents :
b=a cos 8 in the X direction
and ¢ = a sin 0 in the jX direction
and be written as F1G.6.31
b+ jc
where b=acos 0
and ¢ = a sin §.

The expression b -+ jc is called a complex quantity, the
word “ complex ” indicating that the addition is not to be
made algebraically, but by vector addition,

This use of a complex quantity such as b + jc is not
limited to true vectors, but is found useful in many applica- o
tions in electrical engineering. Its application to alter-
nating currents is covered in Chapter 4, and the following treatment is a general
introduction to the methods of handling complex quantities.

Modulus

The modulus is the magrutude of the original vector (a in Fig. 6.31) and is numeric-
ally equal to the square root of the sum of the squares of the magnitudes of the two
components,

b

la] = Vb + ¢ @
Addition and subtraction of complex quantities
The primary rule is to place all *“ real ” numbers together in one group and all
¢ imaginary ” numbers in another. These two groups must be kept entirely separate
and distinct throughout. The final form should be
.Y+ ).

*QOr ¢ in pure matkemarics,
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Example: Add 4 + 7B, C -+ jD, E — jF.
Total is 4 + C + E + jB + jD — jF
=(A+ C+E +jB+D—F)

Multiplication of complex quantities

The multiplication is performed in accordance with normal algebraic laws for real
numbers, j? being treated as — 1.

(1 + jyxe + jye) = X305 + jy 1% + jYex:s + Vs
= (%1% — ¥1¥2) + 7 (x1¥s + Xy )

Division of complex quantities

The denominator should be made a real number by multiplying both the numerator
and the denominator by the conjugate of the denominator (i.e. the denominator with
the oppositc sign in front of the j term).
%, +jy 1 (xy + 7y )%y = jys) x1x?(i_fllj‘2,_:13?_1933_1’__3_’322

X +]3’2 (xz + 7y)(%e — jye) xo? + yo?
X1Xe i YiY2 X2 YiXe 3
=\~ ) I\ - (3
X" T Ve X" 4 Yo
Similarly
e .
e eI (2 (Y @
x4y (x A gy)E - gy) Xyt x4yt

Square root of complex quantities

To find the square root of (a + jb), assume that the square root is (x + jy) and
then proceed to find x and y.

(% ) = (x +jy)(x + jy) = &* — y* + Yxy

Therefore  a +jb = (x* — y%) + Zjxy = (x* — 3% + j(2xy)
Therefore (x2 — 32 = a
and 2xy =b. -

Modulus = 7r = ma

Square of modulus of (x 4 jy) = x2 + 32
Therefore x* + y

=r
But x? — 9% = g (see above,
Therefore x? = r .T_ a) and 2 = (0 — a)

Therefore x = 4+ A/ 3{r + a) and y = + v/ 'Y — a) (5)
The signs should be checked to see which are applicable

(ii) Complex algebra with polar coordinates
In complex numbers we can write (Fig. 6.31)

a =b+ je
but b = |a] cos 8
and ¢ = |a| sin ¢
Therefore a = la| cos 8 +j [a] sin 8
Therefore a = |a| (cos 8 4 jsin 6) (6

Here [a| is the magnitude of the vector and (cos § + j sin 6) may be called the
trigonometrical operator which rotates the vector through the angle ¢ in a positive
(counter-clockwise) direction from the x axis.

As explained in Sect. 5(iv), a vector may be defined by

r/ 0
where r is the magnitude and / 6 the angle between the vector and the reference axis.
1t will therefore be seen that the trigonometrical operator (cos 6 -+ 7 sin 6) is effectively
the same as / ¢ with polar coordinates.
ie. /0 =cos 6§ + jsin 8 )

Pure mathematical polar form

By the use of the Exponential Series we can express € in the form (Sect. 2, eqn. 87)

x3 xt

xz
Coltrrgitaity
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Putting j# for x we obtain
GO GD L GO GO
2t " 3! 4! 5! v
R i .03 [’Ad BCA
=1+j0 2 It tis -
Grouping the j terms,

e =1 456+

) g # ) g 65
et =(1 —-5‘—-'-7'—) +](0-—§!‘+-§—!—-..)
02 04
But cos § =T — 21 + o from eqn. (17) below
03 05
and sin # = 6 — 37 + 51 from eqgn. (18) below.
Therefore e = cos 8 + j sin- 0 ®
Thus the pure mathematical polar form is

la] b
and is called the Exponential Form.
The vector can thus be written in the various forms

a =b+je 9
a =la| 28 (10)
a = |a] ¢ (11)
a = |a| (cos 8 + jsin ) (12)
a = |a| cos 8 4 jla] sin 6 (13)

A graphical method for converting from the complex form (b + jc) to the polar
form and vice versa has been described.* It will therefore be seen that there is a
connection with the operator j :

j turns a vector through a right angle
(cos 8 + j sin 8)
) turns a vector through an angle 4.
or et J

Addition and subtraction in polar form
Addition and subtraction may be done either graphically, or by expressing each
in rectangular components and proceeding as for rectangular coordinates,

Multiplication of polar vectors
The product is found by multiplying their magnitudes and adding their angles.

Division of polar vectors

The quotient is found by dividing their magnitudes and subtracting the angle of
the divisor from the angle of the dividend.
Square ‘root of polar vectors

The root is found by taking the square root of the magnitude and half the angle.

(iii) De Moivre’s Theorem
De Moivre’s Theorem states that
(cos 6 -+ jsin 6)® = cos n0 + jsin nd (14)
where n may be positive or negative, fractional or integral.

It was explainedin (ii) above that (cos + j sinf§) may be regarded as a trigono-
metrical operator which rotates the vector throug.: an angle 8. If this is applied twice
in succession, the trigonometrical operator becomes

(cos 0 -+ 7 sin 8)( cos 8 + jsin-0) = (cos 6 + jsin 6)*
giving a total rotation of an angle 26.

Similarly if this is applied three times in succession, the trigonometrical operator

becomes
(cos 8 + j sin 8)(cos 8 + 7 sin §)(cos § + 7 sin 6) = (cos § -+ f sin 6)®
giving a total rotation of an angle 34.

*Snowdon, C. ‘“ A vector calculating device  Electronic Eng. 17.199 (Sept. 1944) 146.
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Thus, in the general case, the trigonometrical operator (cos 6 4 j sin )" gives a
rotation of an angle n0 which, as explained above, is equivalent to a trigonometrical
operator

(cos n6 + j sin nd).
We have, in this way, proved De Moivre’s Theorem for the case when # is a positive
integer, and indicated the significance of the Theorem.

Application of De Moivre’s Theorem :
1. To express cos né and sin 78 in terms of cos § and sin 8, where 7 is a positive
integer.
Cos n8 -+ jsin n6 = (cos & + jsin 6)"
n(n — 1)
2

= cos™ 8 + njcos” ! f.sin 6 + — j3 cos™2 g, sin2 § & ...
(as in Sect. 2, egn. 83).

Then equate the real and imaginary parts\of the equation, giving

-1 ~ 1)Yn — 2)(n — 3
cos 76 = cos"f — n(n*z_) cos™ 20, sin?6 + nn )(’;, X )cos"“e.
sin*f + ... (15)
—1 2
sinnfd = ncos®10,sin § — n(_n'_?’)‘(*n__“) cos™ 36, sin%f +
— )(n — 2)(n — 3)(n — 4
n(n Xn 5')(11 Xn ) cos™ %0, sin%@ + , ., (16)

2. To express cos 8 and sin 8 in terms of 6, write 8 in the form n(8/n) and expand
the sine and cosine as in eqns. (15) and (16). When n becomes large, cos (8/n)
may be taken as unity and sin (6/#n) as (6/n) itself. In the limit as # tends to
infinity it can then be shown that

02 ¢ g0

COSO=1—§!'+I!‘—E—!+ amn
. 93 #° i
s1n0=9—3—!+§1—7—! (18)

where 8 is expressed in radians,
3. To express sin 8 and cos 6 in terms of €,
By substituting 8 in place of x in the Exponential Series (Sect. 2, eqn. 87), and by
using the relationship
: €® = cos 0 +jsin @
and equations (17) and (18) we may obtain
. e — b
sin 6 = ——é}.——

i 4 ¢
and cos @ =€— _; —

(19

(20)
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SECTION 7: DIFFERENTIAL AND INTEGRAL CALCULUS

(i) Slope and rate of change (ii) Differentiation (iit) Integration (iv) Taylor's
Series (v) Maclaurin’s Series.

(i) Slope and rate of change

The slope of any straight line is the ratio of the lengths of the vertical and hori-
zontal projections of any segment of the line. In Fig, 6.32 the line QP has its vertical
projection MN and borizontal projection AB ; its slope is therefore MN/AB, Its
slope could equally well be based on the projections of its segment CP, and its slope
BP/CB. In both cases the result is the same, and is equal to the tangent of the angle
of inclination which the line makes with the horizontal axis—

slope = MN/AB = BP/CB = tan 4.

The lengths of the projections must be measured in terms of the scales to which
the line is drawn. Thus horizontal projections such as CB must be measured, not
in inches, but in the equivalent number of units corresponding to the length CB on
the X axis. Similarly with the vertical projections on the Y axis, which usually has
quite a different scale from that for the X axis.

. FIG. 6.32
N ¥
po—mm ls
|
{
|
|
|
| F
|
. I
(]
o « | [ SCALEN
i ' € © G\l
| Rf-———=%q
|
K FIG, 6.324A

If the line QP in Fig 6.32 is rotated approximately 90° in the counter-clockwise
direction, the result will be as shown in Fig. 6.32A, the angle # being mors than 90°.
The vertical projection is RS and the horizontal projection is DE. The slope is there-
fore RS/DE or OF/GO, the latter applying to the segment FG. It is important in
all this work to consider the directions as well as the magnitudes of the lines : OF is
in a positive direction but GO is in a negative direction. We can therefore replace
GO by —OG ; the slope of QP will then be given by —(OF/OG) which is described

% " as a negative slope. The loadlines on

valve plate characteristics are examples of
lines with negative slope (e.g. Fig. 2.22).

When a line is curved, its slope varies
from point to point. The slope at any
point is given by the slope of the rangent at
that point, In Fig. 6.33 the curve is QPR,
and the slope at P is given by BP/CB or
tan 6.

Rate of change

One of the most important relationships
between the variables in any law, formuia
or equation is the rate of change of the
whole function with its independent vari-
able.

FiG. 6.33
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Definition

The rate of change is the amount of change in the function, per unit change in the
value of the independent variable. The rate of change of the function is therefore
the ratio of change in the function to the change in the variable which produces it.

Consider the equation for a straight line

y=ax+b

where a and b are constants. Let us take two values of x, one equal to x, and the other
(% + 4x), where dx is a small increment of x.

Point 1: x = x, Soyy=ax, +b ¢}
Point 2: x = (x, + 4x) .y, = alx, + 4x) + b 2)
Subtracting (1) from (2), (vy — ¥y = a.dx
Putting (y. — y,) = 4y, dy = a.dx

4
Dividing both sides by 4x, A—i =a 3

Here 4y is the amount of change in the function for a change 4x in the independent
variable. The “ rate of change ” is defined as the amount of change in the function
per unit change in the independent variable, that is

rate of change = Ady/Ax 4)

Referring to Fig. 6.34, we have a graph of ¥y = ax + b which is, of course, a straight
line cutting the Y axis at a height b above the origin. The first point (x,, ¥,) is at P,
and the second point (x, + 4x, y, + 4y)is at Q. In the preceding argument we
found that 4dy/4x = a. In Fig. 6.34 4x = PR and 4y = RQ, so that 4y/dx =
RQ/PR, which is the slope of the line y = ax + . Thus

1 RQ_ o 5
sope—PR——Ax—a (5)

Equations (4) and (5) prove that the rate of change is the same as the slope
for a straight line.

We now proceed to consider the general case when the function is not linear. In
Fig. 6.35 there is plotted a function which may be of the form

= ax* + bx + ¢
where a, b and ¢ are constants. As before, the independent variable (x) is plotted
horizontally, while the dependent variable (¥) is plotted vertically. The vertical
coordinate of any point P (i.e. AP in Fig. 6.35) represents, to its proper scale, the value
of ax® 4+ bx + ¢ which is a function of x, while the horizontal coordinate (QA) re-
presents, to its own scale, the value of x.

FIG. 6.35

) X, +aX x

As with the simpler case of the straight line, take a second point (Q) with its x
coordinate increased by 4x. Also, as before, call the increment in the y coordinate
4dy. Itwill therefore be seen that, commencing at point P, an increment (dx = PC)
in the value of x results in an increment (dy = CQ) in the value of y.

The average rate of change over this increment is, as before, 4y/4x which is
the slope of the chord PQ and the tangent of the angle 6, which PQ makes with the
horizontal. If now, leaving point P unchanged, we gradually move Q along the curve
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towards P we will see that, as Q approaches P, ¢, approaches &, until in the limiting
case the slope of the chord approaches the slope of the tangent (PT). The tangent
to a curve at any point shows the instantaneous slope of the curve at that point and
therefore the instantaneous rate of increase of the function at that point,

(ii) Differentiation
We may express the foregoing argument in the mathematical form of limits—
Lr (dy/Ax) = tan 6, (6
4x — 0
which says that the limit (as dx is made smaller and approaches zero) of 4y/dx
is tan 8, or the slope of the tangent PT, which is the instantaneous rate of increase
at point P,
This is given the symbol dy/dx which is * the differential coefficient (or de-
rivative) of y with regard to x,” and is spoken of as *‘ dee y by dee x.”
Itshould be noted that dy/dx is a single symbol, not a fraction, and is merely a
short way of writing
Lt (dy/d4x).
4x— 0

Differentiation is the process of finding the differential coefficient (or derivative).
Some examples are given below and in each case the result may be obtained by con-
sidering the increase in the function which results from an increase 4x in the inde-
pendent variable.

Note : u and v are functions of x ; a, b and ¢ are constants.

1. Derivative of a constant [y = c] dy/dx =0 )
2. Derivative of a variable with respect to itself
[y = x]: dy/dx = dx/dx =1 3
3. Derivative of a variable multiplied by a constant
[y =c¢x]: dy/dx = ¢ ®
4. Derivative of powers of a variable
[y = x*]: dy/dx = 2x (10)
[y = x%]: dy/dx = 3x? (11)
[y = %4]: dy/dx = 4x3 12)
[y = x"}: dy/dx = nx™1 13)

This applies for n negative as well as positive.
5. Derivative of a constant times a function of a variable

[y = cx?]: dy/dx = 2¢cx (14)
[y =cul: dy/dx = v.du/dx (15)
6. Derivative of fractional powers of a variable
[y = x4 : dy/dx ~ §x~% (16)
[y = xt/"]: dy/dx = (1/n)x1/m=-1 an
7. Derivative of a sum or difference
{fy=u4v]: dy/dx = du/dx + dv/dx (18)
[y = ax® + bx® — ex]: dy/dx == 3ax® + 2bx — ¢ (19)
8. Derivative of a product of two functions
; i) 20)
v = uv]: dy/dx = g + L (
{y =(x + 1) x%}: dy/dx = (x + 1).2x + x%.1
= 3x? + 2x (21)
9, Derivative of a quotient of two functions
du dv
_ R 22)
[y = u/v): dx — g
10. Differentiation of a function of a function ; Y
u
[y = F(u) where u = F(x)]: d—i-:— = ‘Tz dx (23)

[y = u* where u = ax* + b]: dy/dx = 2(ax* + b)2ax) (24)
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11, [y = €*]: dy/dx = € (25)
[y = a.e™*]: dy/dx = a.m.e™? ) (26)

[y = €*]: dy/dx = €*. du/dx @7

12, [y = logex]: dy/dx = 1/x (28)
[y = loge u]: dy/dx = (1/u)(du/dx) (29)

[y = logs, ] : dy/dx = (1/u)(du/dx) log,pe . (30)

= (0.4343)(1/u)(du/dx) 31

13. [y ==sin x]: dy/dx = cos x 32)
[y = cos x]: dy/dx = — sin x (33)

[y = tan x]: dy/dx = sec? x . (34)

[y = cot x] : dy/dx = — cosec® x - (35)

[y = sec x]: dy/dx = sec x. tan x (36)

[y = cosec x] : dy/dx = — cosec x. cot x 37

14. [y = sin"1 x]: dy/dx = 1/V1 — x%t (38)
[y = cos~? x] ¢ dy/dx = — 1)\/1 — 2% *(39)

[y =tan x]: dy/dx = 1/(1 + x®} (40)

15. [y = sinh x]: dy/dx = cosh x 4n
[y = cosh x]: dy/dx = sinh x (42)

[y = tanh x] : dy/dx = sech? x. (43)

Successive differentiation
If v is a function of x, then dy/dx will also be a function of x and can therefore be
differentiated with respect to x, giving .
"Z} %) which is writter.x as g;{-—
and spoken of as “ dee two y by dee x squared.” Here again this is only a symbol
which must be handled in accordance with its.true meaning. The same procedure
may be applied again and again.

Example: y=x"... ........ function F(x)
% =ax"l...0 ..., derivative F'(x)
dy s ’e
dd = n{n — Dx™2.,. ... second derivative F"'(x)
d’y

i n(n — 1)(n — 2)x*3, ... third derivative F"’(x)
Application of differentiation

The plate current versus grid voltage characteristic of a triode valve (for constant

plate voltage) is a function of the grid voltage, and follows approximately the law
I, = K(pE, + E,)*/ ‘

where K, u and E, are constants. The derivative with regard to E, is dI,/dE,,

which is the mutual conductance. The second derivative is the rate of change of the

mutual conductance with regard to E,, and is useful when we want to find the con-

ditions for maximum or minimum mutual conductance.

In Fig. 6.36 there is a curve with a maximum at point M and a minimum at
point N. It will be seen that the instantaneous slope of the curve at both points M
and N is zero, that is dy/dx = 0. :

Part of curve: Pto M M MtoN N N1oQ

Slope (dy/dx) : -+ ve (o] —ve (o] + ve
d?y/dx® : — ve + ve
A maximum is indicated by : dy/dx =0
d%y/dx? negative
A minimum is indicated by : dy/dx =0

d*y/dx? positive
$ x measured in radians. ' -

"gositive sign if sin—1 xlies in first or fourth quadrant, negative sign if sin~1 x lies in second or third
quadrant, ’

‘rglegative sign if cos ™+ x Iies in first or second quadrant, positive sign if cos—1 x lies in thitd or fourth
quadrant.
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A pomnt of inflection* is indicated by :

d¥y/dx* =0
Curve concave upwards indicated by : d*y/dx* positive
Curve concave downwards indicated by : d*y/dx*® negative
Examples v FIG. 6.36

(1) To find the maximum value of
y=2x— x>+ 4
dy/dx = 2 — 2x
For a maximum dy/dx = 0, therefore
2 —2x =0,and x = 1.
This i$ the value of x at which a maximum,
or a minimum, or a point of inflection occurs.

To see which it is, take the second derivative—
d?y/dx* = — 2 which is negative,

ol — — -

o]

Therefore the point is a maximum.
To find the value of y at this point, put the value
(x =1intoy = 2x — x* + 4.
Therefore v =2 —1 -+ 4 =5.
(2) To find the points of inflection in the curve
y = x* — 6x* — x + 16,
dy/dx = 4x® — 12x — 1
d*y/dx® = 12x* — 12,
For points of inflection, d%y/dx? = 0, therefore 12x> — 12 = 0
Therefore 12x% = 12, Thus x = 4+ 1.

There are thus two points of inflection, one at x = + 1, the other at — 1. The
values of y at these points are given by substituting these values of x in the funsction :
x=+4+1:y=1-6—-1+16 = + 10.
x=—31:y=1—-6-+1416 = + 12.

It is always wise to make a rough plot of the curve to see its general shape. Some
curves have more than one value of maximum and minimum.
Partial differentiation

Partial differential coefficients, designated in the form 0y /dx (the symbol & may be
pronounced * der * to distinguish from ““ d” in dy/dx) are used in considering the
relationship between two of the variables in systems of more than two variables such
as the volume of an enclosure having rectangular faces, the sides being of length
x, ¥ and z respectively :

v=xy2z (44)

Thus, the rate of change of volume with the change in length of the side x, while

the sides ¥ and z remain constant, is

0v/0x =y 2 (45)
Similarly 0v/8y = z x, where 2 and x are constant (46)
And 0v/02 = xy where x and y are constant 4"

In three-dimensional differential geometry, the equation representing a surface may

be represented generally in the form
y = F(x, 2) (48)

In this case, the partial differential coefficient 0y /0 x represents the slope at the point
(x, ¥, 2) of the tangent to the curve of intersection of the surface with a plane parallel
to the plane passing through the x and y axes and separated oy a fixed distance 2z
from the latter.

Thus 0y/0x represents the slope of a tangent to a cross section of a three-dimensional
solid, the partial derivative reducing the three-dimensional body to a form suitable
for two-dimensional consideration.  dy/0x > is equivalent to * dy/dx (z constant)”
when there are three variables, x, y and 2.

*A point of inflection is one at which the curvature changes from one direction to the other (e.g. S
in Fig. 6.36). It is necessarily a point of maximum or minimum slope.
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Partial differentials are therefore particularly valuable in representing Valve Co-
efficients [see Chapter 2 Sect. 9(ix)].

Total differentiation
When there are three independent variables (x, v, z) which are varying simul-
taneously but independently of each other,

u = F(x,y,2) (49)

the total differential is
e Pae By By 50
U= 5= dx + & iy + 5z % (50)

and similarly for two, or any larger number of independent variables.

When the independent variables are functions of a single independent variable ()
the total differential with respect to ¢ is
du u dx E?_ud‘y_‘_ﬁtiz 51
dt  O0x dt +5y d ' 0z dt )
(iii) Integration
Integration is merely the inverse of differentiation. For example—

d
Differentiation— e (4x® 4+ 2) = 12x*
Integration— J. 12x? dx = 4x* + C

The sign J (called “ integral **) before a quantity indicates that the operation of

integration is to be performed on the expression which follows.

The dx which follows the expression is merely a short way of writing “ with respect
to x.”” Just as the constant 2, in the function above, disappeared during the process
of differentiation, so it is necessary to replace it in the inverse procedure of integration.
But when we are given the integral alone, we do not know what was the value of the
constant, so we add an unknown constant C, the value of which may be determined
in some cases from other information available.

Useful rules for integrals
a, b, ¢ = constants ; C = constant of integration ; u and v are functions of x.

1. fa.F(x\ dx = a| F(x) dx ; fa dx =ax + C (52)
2. f(u + o) dx = fu dx &+ Jv dx (similarly for more than two) (53)
1
3.fxndx=n+lx"+1+c (s — 1) (58)
4. fa“’dx = (a*/logea) + C (55)
5.je’dx= e 4+ C; fe‘"’dx=(1/a)e“+c (56)
fxs’dx = exx — 1) + C; fx”'f”dx —xme — fx""“e“dx +C* (571)
d di
6. f u é:dx = uy — f vdl;dx (integration by parts) (58)
d: 1
1. —i=f—dx=log<x+(’=log€cx (59)
x x
8. fa‘ logcadx = a* + C3 flog., xdx = x log, (x/€) + C (60)
n _ (ax -+ b)n+1
9.J'(ax+b)dx— st tC (n5= — 1) (61)

*m> 0.
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dx
10. jax = fax ——dx = (1/0) log (ax +8) + C (62)
x dx
11. fa“?ﬁ' fax oy dx = (1/a® [ax + b — b log, (ax + B)] + C (63)
12[’”1"—— PR 1 5|+ cC 64
',(ax~}-b)"—f(a;)c+b)2 x_a2|:ax+b+°g‘(ax+ )]+ (64
x% dx B x2 _ [(ax + b)*
13.fax+b _fax+b dx—;a HETZ  gbax + 5 +
Bloge (ax + b)] +c (65)
dx 1 1 x 1
14. x2+a2=f§§+a2dx=‘—ztan‘1; +C=—_cort> 4+ C (66)

dx 1 1 x —a 1 a—x
15. fxz_a2=fxz_azdx=z~a-log i C=plg L+ C 6D

dx 1
16. f .=f - sint — — cost
Va Va == dx = sin~! (x/a) + C cos™t(x/a) + C (68)
1 _
17~ f e —— I'——: = _2".—‘ T
Vi £ gt \/xziazdx log (x + V¥ & &) + C 9
18. fsin axdx = — (1/a)cosax + C (70)
19, jcos axdx = (/a)sinax + C @)
20. jtan axdx = — (1/a)logecos ax + C = (1/a) log. sec ax + C (72)
21. fcosec ax dx = (1/a) log_ (cosec ax — cot ax) + C (73)
= (1/a) log, tan (ax/2) + C (74)
22. f sec ax dx = (1/a) log, (sec ax + tan ax) + C (75)
= (1/a) log, tan [(ax/2) + = /4] + C (76)
23, fcot ax dx = (1/a) log, sin ax + C = — (1/a) log, cosec ax + C an
24, fsinz ax dx = x/2 — (1/2a) sin ax cos ax + C (78)
= x%/2 — (1/4a)sin2 ax + C (79
25, f cos? ax dx = x/2 + (1/4d) sin 2ax + C (80)
26. f sinh x dx = cosh x @1
27. fcosh x dx = sinh x (82)

Rules to assist integration
1. If the function is the sumn of several terms, or can be put into this form, integrate
term by term.

. If the function is in the form of a product or a power, it is usually helpful to
multiply out or expand before integrating.

3. Practions may be either divided out, or written as negative powers.

4. Roots should be treated as fractional powers.

5. A function of x may be replaced by u, and then

_(F (x) dx = fF(x) — du.

N
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Areas by integration
if the area under a given portion of a curve is 4 (Fig. 6.37), then a small increase
Ax on the horizontal axis causes an increase 44 in area, where
dA = dx(y + $4dy).
As 4x and 4y are made smaller, in the limiting case as 4x approaches zero, the value
of (y 4+ %4y) approaches y,

Y, N
1.e.

Lt [AA
4z~ 0l g%

FIG. 6.37

=Y

Therefore i‘é =y = F(x)
dx
Therefore d4 = y.dx = F(x) dx
Thus 4 = f y dx = f F()dx  (83)

[
! [
! } The area is therefore given by the in-
Js_: o tegral of the function, over any desired
e X i X jee x range of values of x.

Example
To find the arei under the curve y = 3x? from x = 1 to x = 4.

A=f3x2dx=x3+C

when x = 1, 4 = 0, therefore x® + C = 0, therefore C = — 1
when x =4, 4 = x® — 1 =43 — 1 = 63.

Definite integrals
When it is desired to indicate the limits in the value of x between which the integral
is desired, the integral is written, as for the example above,

x =4 4
3x% dx or 3x? dx.
X = I I

These limits are called the limits of integration, and the integral is called the de-
finite integral. For distinction, the unlimited integral is called the indefinite
integral.

The definite integral is the difference between the values of the integral for x = b
andx = g —

b b
f fx) dx = [F(x)] = F(x = b) — Flx = &) (84)

Owing to the subtraction, the constant of integration does not appear in definite
integrals,

Special properties of definite integrals

b a
f f(x) dx = — fb f(x) dx (85)
'c b ¢
J flx) dx = f flx) dx + fb f(x) dx (86)
Examples :

/2 /2
sin # df = | -~ cos 8 =[~cosn/2 +¢cos0] =0-4+1=1 (87)
0 0
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n/2 n/2
cos 6df = smﬁ} = [sinw/2 —8in0} =1 —0 =1 (88)
0 0
ka m
f sin 0df = —cosf)] —f[—cosm +cos0]=1+1=2 (89)
0 0
m - ki
J cos §d8 = smO] = [sinm —sin0]=0—-0=0 (90)
0 Jo
27 r 2m
Jo sin #df = —coso} =[—cos2n +cos0] =—1+1=0 (91)
L 0
2w r 2m
cos 6 dEd = sinﬂ] —~ [sin27 —sin0] =0-—-0=0 (92)
0 0 ‘
™ m
f sin? n8dd = %':0 — .(1/2n) sin Znﬂ =n/2 ) 93)
0 0
o T w7
cost nf do =f (1 —sin2nd df)d = [0:\ — /2 = n/2 (94)
0 0 0

The following may also be derived* where m == n

2m 2m

f sin n6 dé = 0 f cosnf dd =0 (95)
0
27

J sin? nf do == f cos? nfdf = = (96)
0 0
2n 2n

f sin mf cos nf df =0 f sin mf~anfdd =0 S 97
0 - 0 o
2m

cos mBcosnBdf =0 f (98)

0
2m

j sin nf cos nf dfd =0 99
0

Average values by definite integral

The value of the definite integral is the area under the curve between the hmxts
on the horizontal (x) axis. The average value of the height is determined by dividing
the area by the length, or in other words the average value of y is determined by
dividing the definite integral by the difference in the limiting values of x.
Examples :

1. y =3x*fromx = 1to x = 4.

4 r 4
1 1 ] 1 63
2 I 3 — — = _. ==
Yav = 3 lfl 3x dx—3Lx —3[64 l:l 3 21.

BRS

2. ¢ =E,sin 8 from 8 =0to 8§ ==,
. 2
s

1 (7 1l
Eoo = En— sin0d0=E,,.—L—0030 =
ku 0 m

«This also applies with limits from & to (k + 2m).
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This is the average value.of a sine wave voltage. It was taken from O to = since
this is the range over which it is positive. The other half cycle is similar but negative,
so that the average over the whole cycle is zero.

FIG.6.38
1 [ | — —Egorl
- J—— i 2 3 m m
3. Trms) = f[) Insin )2 d8 ;;
E
126 sin26]2 <
T2 |2 4 0 T g;‘).
[e]
I, ) S
= —Q - time
2 iy 0 0+ 0] {nng!c (radians)
I‘"lz I"ﬂ?
— =

Therefore I, .. = In/v/2~ 0.707 I,.
This is the root mean square value of the current with sine waveform.

(iv) Taylor’s Series
If f(x) be a function with first derivative f’(x), second derivative f*(x), third deriva-
tive f"’(x), etc., and if the function and its first n derivatives are finite and continuous

from x = a to x = b, then the following expansion holds true in the interval from
x=atox==~0:

— — 2 — 3
1@ =s@ + @+ 5 i+ ES 2 g
(x — @ (x ~ @
et T ST @ ——nf)--f"(x“) (100)

where a < x, < b,

The final term is called the remainder ; if this can be made as small as desired by
making # sufficiently large, the series becomes a convergent infinite series, converging
to the value f(x).

Another form of Taylor’s Series is :
h h? h?
fla+ B = f@) + 177@) + 5@ + 5/7@ + ...

hn—l h"
—_——— —1 —
o/ @t @+ (101)
The sumn of the first few terms of Taylor’s Series gives a good approximation to f (%)
for values of x near x = a.
Examples of the use of Taylor’s Series :
(1) To expand sin (a¢ + k) in powers of A.
f(a) =sinagand f(h) = sin h
Differentiating in successive steps we get

f@) = cosa
flag = —sina
f"(a) = —cosa
(@) = sin a
Applying the alternative form of Taylor’s Series,
. ) o B3 hi
sin(a + h) =sina + hcosa — 5ysina —3jc0sa +Z-!sina+ (102)

(2) Similarly
. . h? A Rt
cos{a -+ h)=cosh — hsina — 3z cosa +5f!sma + z1608a 4+ ... (103)
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(v) Maclaurin’s Series
Maclaurin’s Series is a special case of Taylor’s Series where a = 0.

7Y 2 117, s
f(x) = f(0) +f(0)x +f (203’6 +f 3((?" + ... (104)

The sum of the first few terms of Maclaurin’s Serics gives a good approximation
10 f(x) for values of x near x = 0,
Example of the use of Maclaurin’s Series :
f(x) = cos x

2z 2 114, 3 00 %t
then cos x = f(0) +f((;)|x +f (O)x —|—f ?E(:)x +f Eu)x
where f(0) =cos0 =1
f(0) = —sin0=0
f'0) = —cos0 = —1
f7(0) =sin0 =0
f70) =cos0 =1
The series may then be written down as
x%  xt x®  x®

cosx=l—ﬁ+ZT--a—!+§j—-~- (105)
Similarly
. x3 x* xT x®
sxnx=x—ﬂ+§T~ﬁ-%§“!*--- (106)
. . 3 xa xs
]smx=](x~ﬂ+§i—...)
_
cosx-{—]smx-—(l -’r* 6'+ >+1( 3|+5,—~5—|+...>
2x2 ]Gx.’i ijd §
—~1+]x+2'+3| Tl+... (107)

Also it may be proved that
% x? x*

loge (1 + ) =% — 3 +5 =5 + ... (108)
1x2 j3x3 j4x4
and e”—l+1x+2'+3! +;l—!~+...
= ¢os x + j sin x (see eqn. 107) (109)

SECTION 8 : FOURIER SERIES AND HARMONICS

(&) Periodic waves and the Fourier Series (#) Other applications of the Fourier
Series  (iti) Graphical Harmonic Analysis.

(i) Periodic waves and the Fourier Series

The equation for any periodic wave can be written by substituting the correct
values in Fourier’s Series : |
y = F(8 =B,/2 + A,sin 8 + A,sin28 + Ays5in30 + ...

+Blc050+Bzc0529+B3c0330+ €Y
where B,/2 is a constant which is zero if the wave is balanced about the x axis ;
its value is the average value of vy over one cycle and may be
determined by putting » = 0 in the expression for B, below,

An

i

27
LJ F(6) sin n8 df where n = 1,2,3, etc.
mJo

l

2 x average value of F(0) sin n taken over 1 cycle,
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=

1 [
B, =7f0 FE(8) cos n8 d8 where n = 0,1,2,3, etc.

2 X average value of F(#8) cos n6 taken over 1 cycle,

0 = wr = 2uft ¢ f = fundamental frequency
. 20 = 2wt = 20(2f)t : (2f) = second harmonic frequency
and 30 = 3wt = 22(3f) ¢ (3f) = third harmonic frequency
etc.
Y
FIG. 6.39 A

F(©)=¢ven function,

htd
{ OI 0 B € em X
’ \J C|
Special cases

(1) F(6) is an even function

If the waveform is symmetrical about the y axis (e.g. Fig. 6.39), F(0) is called an
even function and 4, = 0, giving the simplified form

F(§) = B,/2 + Bycos 8 + Bycos26 4 Bzcos 38 4 ... )

This is the equation which applies to all types of distortion introduced by valves.
(2) F(6) is an odd function

If the waveform is such that the value of v is equal in magnitude but opposite in
sign for plus and minus values of x (e.g. Fig. 6.40), F(8) is called an odd function and
B, = 0, giving the simplified form :

F(8) = A,sin 8 + A;sin20 + A;sin30 + ... 3)
Y A
FIG. 6.40
) FIG. 6.41 Y &
F(©)s0dd function I — o -
l ot o }Yl
o T (il
g ﬁl’ﬂ o l' Bl x A T % o ¥
J-v:
Jytny
|
|
B

[y

This is the equation for the condition when the fundamental and all the harmonics
commence together at zero.
(3) F(6) = — F(8 L m)

If the waveform (Fig. 6.41) is such that the value of y is equal in magnitude but
opposite in sign for x = x, and x = (x; 4 =), the expansion contains only odd
harmonics :

F(8) = Aysin 8 + A;sin30 + A;sin580 + ...
+ Bycos 8 + Bycos 38 + Bgcos58 + ... (4)
(4) F(6) is an even function, with the positive and negative portions identical
and symmetrical (Fig. 6.42):

F(8) = B, cos 8§ 4+ B;cos 30 + Bycos 58 + ... 5)
or if the origin is taken at A,
F(0) = B,sin § — B;sin360 + Bysin560 — ... ©)

This is the equation for a balanced push-pull amplifier.
The general equation (1) can also be expressed in either of the alternative
forms :
F() = B,/2 + Cysin (8 + ¢;) + Cysin (20 + ¢) + .. . )
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F(6) = B,/2 + C;cos (8 — ¢,) + Cycos (20 — ¢5") + ... €))
where C, = \/A,.2 + B,?
and tan ¢, = B,/A,; tan¢, = A,/B,.

The angles &, s, . . . in eqn. (7) are the angles of lead between the harmonics
of the sine series and the corresponding sine components in eqn. (1). The angles
é.s éy's . . . in eqn. (8) are the angles of lag between the harmonics of the cosine series
and the corresponding cosine components in egn. (1). All the angles ¢ and ¢’ in
equations (7) and (8) are measured on the scales of angles for the harmonics

FIG, 6.42

Harmonic composition of some common periodic waves (Fig. 6.43)

Square wave (A)

4E cos 30 cos58 cos78 )
3’=7(°°50” 3 T 7 T ®

Triangular wave (B)

8E cos 38 cos 56
y=;;(cosﬁ+"9 +-55—+... (10)

Sawtooth wave (C)

2E/( . sin28 sin36 sin 448 )
y=;—(sm0——7“*+“’3——-——4—~+... (11
FIG. 6.43
¥
A
_ i
E
X

° '
! L

VG I
L Tt 2]

C A 4

e : )
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Short rectangular pulse (D)
sm 2kmcos 26

y =E[k+—(smkwcos g+

2
sin nkmr cos né
— " + .. .)} (12)
Half-wave rectifier output (B)
E( 7 cos 6 2_00320_2(:0540_1_200369
1 2 T 3 15 35
2
L (= Dynest ] o8 no.. ) (n even) 13)
Full wave rectifier output (F)
ZE(1 2cosZ€_2cos4ﬁ+2cos69
y=\1+73 15 3 T
_ e 2C08n8
(=D o (n even) (14)
D 217
¥
R
b m—»l

Fig. 6.43

/h/\m

(if) Other applications of the Fourier Series

The Fourier Series 1s particularly useful in that it may be applied to functions having
a finite number of discontinuities within the period, such as rectangular and saw-
tooth periodic pulses.

The Fourier Series may be put into the exponential form, this being useful when
the function lacks any special symmetries.

The Fourier Series may also be applied to non-periodic functions.

For information on these applications, see the list of references—Sect. 9(B).

(ili) Graphical Harmonic Analysis

Any irregular waveform may be analysed to determine its harmonic content, and
the general method is to divide the period along the X axis into a suitable number of
divisions (e.g. Fig. 6.44 with 24 ordinates), the accuracy increasing with the number
of divisions.

Ordinates are drawn at each point on the X axis and the height of each ordinate
is measured. The minimum number of ordinates over the cycle must be at least
twice the power of the highest harmonic which it is desired to calculate. Various
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methods for carrying out the calculations have been described. Some are based on
equal divisions of time (or angle) while others are on equal divisions of voltage.

In the harmonic analysis of the distortion introduced by valves on resistive
loads, it is possible to make use of certain properties which simplify the calculations :

Y| FIG. 6.44

JﬂT‘F‘\

(1) All such distortion gives a waveform which is symmetrical on either side of the
vertical lines (ordinates) at the positive and negative peaks.

(2) It is therefore only necessary to analyse over half the cycle, from one positive
peak to the following negative peak, or vice versa.

(3) Even harmonic distortion results in positive and negative half cycles of different
shape and area, thus causing a steady (‘‘ rectified ”’) component.

(4) Odd harmonic distortion results in distorted waveform, but with the positive
and negative half cycles similar in shape.

(5) Even harmonics are in phase with the positive fundamental peak, and out of
phase with the negative peak, or vice versa ; they are always maxima when the funda-
mental is zero.

(6) Odd harmonics are always exactly in phase or 180° out of phase with both
positive and negative fundamental peaks, and are zero when the fundamental is zero.

The relative phases of the fundamentai (H,) and the harmonics (up to H) are shown
in Fig. 6.45. The fundamental and third, fifth and higher order odd harmonics
have zero amplitude at 0°, 180° and 360° on the fundamental scale. The second,

FiG. §.45

0 o -] (]

3 6® 99 20° 15 180 adf 24 20 300 a3c® O
LJ_lllllL(l'llill i by lsy [

H, Angle

¢

Ha
H 3
. / E§>, . L\i ﬁ}'34§::§§<-~‘ ]
HN/ ")&‘)Lj Y o \\__ﬁ: \ .

N |/

126° 150° (80° 210° 234°
0 0 2 2 Angle
9l°° TI?S | 132 ‘?ﬂzl _I7°° Oy Curve
L l"l‘ 1} 1 ] I‘L qu
28 wag O LR L=
[ 58 © ’g T 8 ] Et_p_ &
ty Vg i Ty

fourth, and higher order even harmonics reach their maximum values (either positive
or negative) at 0°, 90°, 180°, 270° and 360° on the fundamental scale.
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The amplitudes of the harmonics as drawn in Fig. 6.45 have been exaggerated for
convenience in drawing, while their relative magnitudes are quite arbitrary. - Their
relative phases are, however, quite definite.

In proceeding with Graphical Harmonic Analysis it may be shown that it is possible
to select thirteen points on the X axis which will enable the exact values of the first,
second, third and fourth harmonics to be calculated (Ref. C9) on the assumption that
there are no harmonics of higher order than the fifth, or that these are negligibly small.
These points are limited to the range from 90° to 270° on the fundamental scale, as in
Fig. 6.45. They may be expressed in terms of the grid voltage E ., the static operating
point being — E, and the operating point swinging from E, = 0 on the one side
to 2E, on the other side.

It is only necessary to determine the plate currents at the specified grid voltages,
to insert these into the formulae given in the article and to calculate the. values of the
harmonics.

The preceding exact method has been approximated by R.C.A. (Ref. C10) to give
greater ease in handling. In the approximation there are eleven specified points
in place of 13 in the exact form, the values of the grid voltages being (see Fig. 6.45) :
0; —0.191E,; —0293E,; —05E,; —0691E.; —E,; —1.309E.; —15E.;
=1707E,; —1809E,; —20E..

These have been approximated by R.C.A. to the nearest decimal point, and the
approximate values have been used in the ‘“eleven selected ordinate method ” of
Chapter 13 Sect. 3(iv)D and Fig. 13.24.

The equation giving the second harmonic distortion—eqn. (28) in Chapter 13 Sect.
3(iv)—only requires the values of plate current at three points. This is an'exact
form and is used for triodes in Chapter 13 Sect. 23i) eqns. (6) to (7b) inclusive and
Fig. 13.2. .
~ The “ five selected ordinate method,” described in. Chapter 13 Sect. 3(iv)A
and used for Calculating second and third harmonic distortion in pentodes, is exact
provided that there is no harmonic higher than the third. It is, however, a very close
approximation under all normal conditions. The same remarks also apply to the
simple method for calculating third harmonic distortion in balanced push-
-pull amplifiers, described in Chapter 13 Sect. 5(iii) eqgn. (23) and Fig. 13.37.

An alternative method, based on equal grid voltage divisions, has been devised
by Espley (Ref C6). . This gives harmonics up to one less than the number of voltage
points. Two applications are described in Chapter 13 Sect. 3(iv)—five ordinates
giving second, third and fourth harmonic distortion, and seven ordinates giving
up to sixth harmonic distortion. ) '

When the loadline is a closed loop, as occurs with a partislly reactive load, these
conditions and equations do not apply, or are only approximated.

SECTION 9 : REFERENCES

(A) HELPFUL  TEXTBOOKS ON MATHEMATICS FOR RADIO
Shorver ¥ S0, « Mathematician's Delight » (a Pelican Book
awyer, W. W. ‘ Mathematician’s Delight > (a Pelican Book, Al21, published by Penguin
England and U.S.A. 1943). Possibly the best introduction to mat%ematics. Y guin Books,
Cooke, N, M., and J. B. Orleans, “ Mathematics essential to electricity and radio ”’ (McGraw-Hill,
New York and London, 1943). Highly recommended for general use. 418 pages.
Everitt, W. L.. (Editor) ** Fundamentals of radio *’ (Prentice-Hall Inc. New York, 1943). Chapter 1 only.
“ Radio Handbook Supplemerit > (The Incorporated Radio Society of Great Britain, London, 2nd ed.
1942). Chapters 2, 9. ., . >
* Radio Handbook *. (10th edit., Editors and Engineers, Los Angeles, California). Chapter 28. (Not
11th edition.)
Basic : A . . :
Colebrook, F. M. *“ Basic Mathematics for Radio Students * (lliffe and Sons Ltd., London, 1946).
Complete textbooks, commencing from elementary level : ’
Dull, R. W. “ Mathematics for Engineers >’ (McGraw-Hill Book Co., New York and London, 2nd edit.
c k19411q). MCovizs },lvhole gr?umi:.l 780 pages‘d R ?
ooke, N, . ‘*“ Mathematics for Electricians an adiomen > (McGraw~Hill Book Coy.
and London, 1942).. Generally at lower leve] than R, W. ](Jull and less compreh:xysi’vgewUze‘}ﬁ
for those with limited mathematical background. 604 pages.
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Smith, Carl E. * Applied Mathematics for Radio and Communication Engineers >’ (McGraw-Hill Book
Coy., New York and London, 1945). Excellent treatment in limited space. 336 pages.

Wanga7 lT J. ¢ Mathematics of Radio Communications ** (D, van Nostrand Coy., New York, 1943),

pages.

Rose, W. N. “ Mathematics for Engineers” Parts 1 and 2 (Chapman and Hall Ltd., London, 2nd
edition 1920).

Textbooks commencing at higher level :

Waﬂ;Sn‘i A. G. “ Mathematics Applied to Electrical Engineering (Chapman and Hall, London, 1939).

pages.

Sokolnikoff, I. S. and E. S. “ Higher Mathematics for Engineers and Physicists 7’ (McGraw-Hill Book
Coy., New York and London, 2nd edit., 1941). 587 pages.

Toft, L., and A. D. D. McKay “ Practical Mathematics >’ (Sir Isaac Pitman and Sons Ltd., London,
2nd edit., 1942). 612 pages.

Jaeger, J. C. © An Introduction to Applied Mathematics ’ (Oxford University Press).

Limited application :

Sturley, K. R. ¢ Radio Receiver Design »* Part 1 (Chapman and Hall, London, 1943). Appendix 1A—
i notation ; 2A-—Fourier Series.

Golding, E. W., * Electrical Measurements and Measuring Instruments > (Sir Isaac Pitman and Sons
Ltd., London, 3rd edit., 1944). Chapter 15—Wave forms and their determination.

Lawrence, R. W. * Principles of Alternating Currents” (McGraw-Hill Book Coy., New York and
London, 2nd ed., 1935). Chapter 4—Non-sinusoidal waves.

Eshbach, O. W. “ Handbook of Engineering Fundamentals ’ (John Wiley and Sons, New York ; Chap-
man and Hall, London, 1944). Section l-—Mathematical and Physical Tables: Section 2—
Mathematics.

Also other handbooks.

(B) REFERENCES TO FOURIER ANALYSIS
[see also references under (C) Graphical Harmonic Analysis)]

Bl. Hallman, L. B. “ A Fourier analysis of radio-frequency power amplifier wave forms,” Proc. LR.E.
20.10 (Oct. 1932) 1640.

B2. Lockhart, C. E. “ Television waveforms——an analysis of saw-tooth and rectangular waveforms
encountered in television and cathode ray tube practice, > Electronic Eng. 15.172 (June, 1942) 19.

B3. Williams, H. P. “ Fourier analysis by geometrical methods,” W.E. 21.246 (March, 1944) 108.

B4. de Holzer, R. C. “ The harmonic analysis of distorted sine waves,”” Electronic Eng. 17,208 (June,
1945) 556 ; 17.209 (July, 1945) 606.

B5. Moss, H. “ Complex waveforms,” Electronic Eng. The harmonic synthesiser, 18.218 (April,
1946) 113 ; Analysis of complex waves, 18.220 (June, 1946) 179 ; 18.222 (Aug., 1946) 243.

B6. Furst, U. R. * Harmonic analysis of overbiased amplifiers,” Elect. 17.3 (March, 1944) 143. Gives
curves of harmonics of idealized straight characteristic and sharp angle cut-off.

B7. Espley, D. C., “ Harmonic Analysis by the method of central differences” Phil. Mag. 28.188
(Sept., 1939) 338.

(C) REFERENCES TO GRAPHICAL HARMONIC ANALYSIS

Books

Cl. Mianley, R. G. ¢ Waveform analysis > (Chapman and Hall, London, 1945)
and most radio and electrical engineering text books.

Articles

Equal time divisions .

C2. Kemp, P. “ Harmonic analysis of waves containing odd and even harmonics,” Electronic Eng.
15.172 (June, 1942) 13 (12 ordinates per cycle).

C3. Denman, R. P G. “ 36 and 72 ordinate schedules for general harmonic analysis,” Elect. 15.9 (Sept.,
1942) 44. Correction 16.4 (April, 1943) 214.

C4. Cole, L. S. ©“ Graphical analysis of complex waves,” Elect. 18.10 (Oct., 1945) 142, (6, 8 and 12
points per cycle.) i i

C5. Levy, M. M. ““ Fourier Series,” Jour. Brit. L.R.E. 6.2 (March-May, 1946) 64. (Calculations up
to 160 harmonics)
and many other references.

Equal voltage divisions . X X

Cé. Hspley, D. C.  The calculation of harmonic production in thermionic valves with resistive loads,”
Proc. LLR.E. 21.10 (Oct., 1933) 1439. :

Selected ordinates

C7. Hutcheson, J. A. “ Graphical Harmonic Analysis,”” Elect. 9.1 (Jan., 1936) 16 (odd and even har-
monics in amplifiers). . ]

C8. Chaffee, E. L. *“ A simplified harmonic analysis,”” Review of Scientific Instruments, 7 (Oct., 1936)
384 (Gives 5, 7, 9, 11 and 13 point analysis). .

6. Mouromtseff, 1. E., and H. N. Kozanowski,** A short-cut method for calculation of harmonic dis-
tortion in wave modulation,” Proc. L.R.E. 22.9 (Sept., 1934) 1090.

C10. R.C.A. Application Note “ Use of the plate family in vacuum tube power output calculations
No. 78 (July, 1937).



